APPLICATIONS OF GROUP ACTIONS ON FINITE COMPLEXES TO HILBERT CUBE MANIFOLDS

LEON STAGG NEWMAN, JR.

Abstract. For any compact Hilbert cube manifold M such that $\tilde{H}_s(M, \mathbb{Z}_p) = 0$, there exists an embedding g of M into the Hilbert cube Q such that $g(M)$ is the fixed point set of a semifree periodic homeomorphism of Q with period p. A counterexample is given to the conjecture that any two proper homotopic period p homeomorphisms of a Hilbert cube manifold such that the homeomorphisms revolve trivially about a unique fixed point are equivalent. A counterexample is also given for the case where the fixed point set is empty.

I. Introduction. This paper continues the study of group actions on Hilbert cube (Q) manifolds which essentially began with the work of R. Y. T. Wong [12]. That this study has begun in earnest is shown by the list of questions in [1]. Another recent paper in this area is [7].

The first part of this paper shows that certain finite-dimensional results generalize to Q manifolds without the obstruction theory necessary in the finite-dimensional case.

The second part of this paper demonstrates that Wong's classification [12] of certain periodic homeomorphisms of Q with unique fixed point does not generalize to Q manifolds. Thus the theory of such actions on Q manifolds should be richer than the theory of such actions on Q.

II. Definitions and notation. $Q = \prod_{i=1}^{\infty} [-1, 1]$, the Hilbert cube. A Hilbert cube manifold is a paracompact Hausdorff space admitting a cover of open sets homeomorphic to open sets of Q.

$f \simeq g$ means f is homotopic to g. f is properly homotopic to g if there is a proper homotopy between f and g. (A map is proper if the inverse image of every compact set is compact.)

$X \simeq Y$ means X is homeomorphic to Y. Simple homotopy theory will be used. See [6] for a general reference. $X \simeq_S Y$ means X and Y have the same simple homotopy type.

$\operatorname{proj} \lim \{X_i, C_i\}$ is the inverse limit of the spaces X_i with bonding maps C_i.

In the following definitions, let H be a homeomorphism of a space X with...
period \(p \); that is, \(p \) is the smallest integer such that \(H^p = \text{id} \).

The fixed point set of \(H \) is \(\{ x : h(x) = x \} \).

\(H \) is semifree if for all \(x \) such that

\[
H(x) \neq x, \quad x, \quad H(x), \quad H^2(x), \ldots, \quad H^{p-1}(x)
\]

are \(p \) distinct points.

\(H \) revolves trivially about its fixed point set \(K \) if for every neighborhood \(U \) of \(K \), there is a contractible neighborhood \(V \subset U \) of \(K \) such that \(H(V) = V \).

\(X/(H) \) is the quotient of \(X \) by the group generated by \(H \), i.e., \(X/\sim \) where \(x \sim H^i(x), \quad 1 < i < p - 1, \) for all \(x \in X \).

\[
X/(H(x_0)) = X/\sim \quad \text{where} \quad x_0 \sim H^i(x_0), \quad 1 < i < p - 1.
\]

Two period \(p \) homeomorphisms \(f_1 \) and \(f_2 \) of the space are equivalent if there exists a homeomorphism \(g \) such that \(f_2 = gf_1g^{-1} \).

III. \(Q \) manifolds as fixed point sets.

Theorem 1. Let \(M \) be a compact \(Q \) manifold satisfying \(\tilde{H}_*(M, Z_p) = 0 \) (the reduced singular homology with coefficients in the integers modulo \(p \)). There is an embedding \(g: M \to Q \) and a semifree, periodic homeomorphism \(H: Q \to Q \) of period \(p \) such that \(M \) is exactly the fixed point set of \(H \).

Proof. Lowell Jones [9] proved that if \(K \) is a finite CW-complex satisfying \(\tilde{H}_*(K, Z_p) = 0 \), then there exists a finite contractible CW-complex \(X \) containing \(K \) as a subcomplex and a semifree, period \(p \) homeomorphism \(g: X \to X \) such that \(K \) is the fixed point set of \(g \).

Now T. A. Chapman's Triangulation Theorem for \(Q \) manifolds [5] states that if \(M \) is a compact \(Q \) manifold, then there exist \(K \), a finite simplicial (hence CW-) complex, and a homeomorphism \(f: M \to K \times Q \). So \(\tilde{H}_*(M, Z_p) = \tilde{H}_*(K, Z_p) \).

For this \(K \), let \(h \) and \(X \) be as in the conclusion to Jones' result. Let \(i: K \to X \) be the inclusion map. Let \(g = i \times \text{id}: K \times Q \to X \times Q \). Let \(H = h \times \text{id}: X \times Q \to X \times Q \). By a theorem of J. E. West [11], \(X \times Q \approx Q \). So \(g \) is the desired embedding and \(H \) is the desired semifree periodic homeomorphism of period \(p \). \(\square \)

IV. Counterexamples. R. Y. T. Wong [12] proved that if \(f, g \) are semifree period \(p \) homeomorphisms on \(Q \) with a unique fixed point and revolve trivially about the fixed point, then \(f \) and \(g \) are equivalent. In [1], it was asked: If \(f \) and \(g \) are semifree period \(p \) homeomorphisms of a \(Q \) manifold \(M \) such that (1) they have the same fixed point set \(K \) and it is a single point or empty, (2) both \(f \) and \(g \) revolve trivially at \(K \), and (3) \(f \) is properly homotopic to \(g \), then is \(f \) equivalent to \(g \)?

The answer to both cases, \(K = \emptyset \) and \(K \) a single point, is no. The counterexample for the case \(K = \emptyset \) is a straightforward construction using lens spaces [6, Chapter V]. The counterexample for the second case will take a bit more work.

Counterexample 1. Let \(S^3 = \Sigma_1 \ast \Sigma_2 = \) the join of two copies of
Let $f_1: S^3 \to S^3$ be defined by
\[
f_1(te^{ix}, (1 - t)e^{iy}) = (te^{ix + 2\pi/7}, (1 - t)e^{iy + 2\pi/7}).
\]
Let $f_2: S^3 \to S^3$ be defined by
\[
f_2(te^{ix}, (1 - t)e^{iy}) = (te^{ix + 4\pi/7}, (1 - t)e^{iy + 2\pi/7}).
\]
Let $M = S^3 \times Q$, be a Q manifold.
Clearly g can be defined such that $g: S^3 \times I \to S^3$, $g_0 = f_1$, $g_1 = f_2$. So $f_1 \simeq f_2$. Define $F_i: M \to M$ by $F_i = f_i \times \text{id}_Q$, $i = 1, 2$. Each F_i is a semifree period 7 homeomorphism of M. Define $G: F_1 \simeq F_2$ by $G = g \times \text{id}_Q$. So conditions (1) and (3) of the question are met and (2) is vacuously satisfied. (The spaces involved are compact so all homotopies are proper.)
Suppose there exists H such that $F_2 = HF_1H^{-1}$. Consider the following commutative diagram where h is the naturally defined homeomorphism induced by H and $q_i: M \to M/\{F_i\}$ is a naturally defined quotient map, $i = 1, 2$.

If H existed, $M/\{F_1\} \simeq M/\{F_2\}$. But $M/\{F_i\} \simeq S^3/(f_i) \times Q$, $i = 1, 2$. By [6, §27], $S^3/(f_1) \simeq L(7, 1)$, $S^3/(f_2) \simeq L(7, 2)$, where $L(p, q)$ is the standard 3-dimensional lens space.

Chapman's Classification Theorem [5] states that if X and y are compact, connected Q manifolds and if $X \simeq K \times Q$, and $Y \simeq L \times Q$ (K, L finite simplicial complexes) are any two triangulations, then $X \simeq Y$ if and only if K and L have the same simple homotopy type. But $L(7, 1) \not\simeq L(7, 2)$ [6, §31] and so $M/\{F_1\} \not\simeq M/\{F_2\}$. So H cannot exist and f_1 and f_2 are not equivalent.

Counterexample 2. Let S^3, f_1, f_2 be as in Counterexample 1. Let $T = S^3/(f_i(0, e^{\text{im}(0)})$. Note that $f_i(0, e^{\text{im}(0)}) = f_i(0, e^{\text{im}(0)})$ for all i. Let $q: S^3 \to T$ be the quotient map. From the definition of T, f_1, and f_2, $k_1 = qf_1q^{-1}$ and $k_2 = qf_2q^{-1}$ are well-defined semifree period 7 homeomorphisms of the CW-complex T.

Let \ast denote the unique fixed point of the actions k_1 and k_2. Clearly k_1 and k_2 revolve trivially at \ast. Write $Q = \prod_{i=1}^{\infty}D_i$ where each D_i is a two disk.
centered at the origin. Let \(r_i: D_i^2 \to D_i^2 \) be the standard rotation of \(D_i \) through \(\frac{2\pi}{7} \) radians. Define \(R: Q \to Q \) by \(R(x_1, x_2, \ldots) = (r_1(x_1), r_2(x_2), \ldots) \) where \(x_i \in D_i \) for all \(i \). By a theorem of West [11], \(T \times Q \) is a \(Q \) manifold.

Define \(K_i = k_i \times R: T \times Q \to T \times Q, i = 1, 2 \). Each \(K_i \) is a semifree period 7 homeomorphism revolving trivially around the same unique fixed point. \(J = g g^{-1} \times R \) is clearly a homotopy between \(K_1 \) and \(K_2 \) where \(g \) is the homotopy from the previous example.

Now suppose \(K_1 \) was equivalent to \(K_2 \), that is there exists \(P \) such that \(K_2 = P K_1 P^{-1} \). Then \(P \) would induce a homeomorphism \(\tilde{P} \) such that the following diagram would commute.

\[\begin{array}{ccc}
T \times Q & \xrightarrow{S_1} & T \times Q/{K_1} \\
\downarrow P & & \downarrow \tilde{P} \\
T \times Q & \xrightarrow{S_2} & T \times Q/{K_2}
\end{array} \]

\(S_1 \) and \(S_2 \) are the naturally induced quotient maps. This would imply that \(T \times Q/{K_1} \cong T \times Q/{K_2} \). But it will now be shown that \((T \times Q/{K_1}) \times Q \cong L(7, 1) \times Q \) and \((T \times Q/{K_2}) \times Q \cong L(7, 2) \times Q \), and so \(P \) cannot exist.

Define

\[T_0 = T/\{k_1\} \times (0, 0, \ldots) \times Q, \]

and

\[T_n = \frac{T \times \prod_{i=1}^{n} D_i}{k_1 \times \prod_{i=1}^{n} r_i} \times (0_{n+1}, 0_{n+2}, \ldots) \times Q \]

for all \(n \geq 1 \).

Define \(C_n: T_{n+1} \to T_n \) by

\[C_n = \text{id}_T \times \prod_{i=1}^{n} \text{id}_{D_i} \times C_{n+1} \times \text{id} \]

where \(C_{n+1} \) is induced by the radial collapse of \(D_{n+1} \) to the origin. By the previously mentioned theorem of West, \(T_n \) is a \(Q \) manifold. Each \(C_n \) is a \(CE \)-mapping and hence, by Chapman's \(CE \)-mapping Theorem [3], [4] (see [8] for a short proof), each \(C_i \) is a near homeomorphism. So by Brown's Inverse Limit Theorem [2], \(\text{proj lim} \{ T_i, C_i \} \cong T_0 \). It is easy to put a metric on \(T \times Q \) so that each \(C_i \) is within \(2^{-i} \) of the identity map. Since each \(C_i \) is nonexpansive, the family \(\{ C_n \circ \cdots \circ C_{n+j} \} \cup_{j=0}^{\infty} \) is an uniformly equicontinuous family of maps. Certainly \(\cup_{i=1}^{\infty} T_i \times \right \) is dense in \((T \times Q)/\{K_1\}) \times Q \) so by a lemma of R. Schori and D. Curtis [10], \(((T \times Q)/\{K_1\}) \times Q \cong \)
proj lim\{T, C_i\}. So \(((T \times Q)/\{K_1\}) \times Q \cong T_0\). But \(T_0 = (T/\{k_1\}) \times (0, 0, \ldots) \times Q \cong L(7, 1) \times Q\). The proof that \(((T \times Q)/\{K_2\}) \times Q \cong L(7, 2) \times Q\) is obviously identical. So \(K_1\) and \(K_2\) are not equivalent. □

REFERENCES

8. A. Fathi, A cell-like map between Hilbert cube manifolds is a near homeomorphism, a short proof (preprint).

DEPARTMENT OF MATHEMATICS, BARUCH COLLEGE, CUNY, NEW YORK, NEW YORK 10010

Current address: Bell Telephone Laboratories, Holmdel, New Jersey 07733