A COUNTABLY COMPACT k'-SPACE NEED NOT BE COUNTABLY BI-k

ROY C. OLSON

Abstract. An example is given of a countably compact k'-space that is not countably bi-k. Interest for this example arises from a recent paper of Michael, Olson, and Siwiec and from a 1972 paper of E. Michael, both of which discuss mapping characterizations of a range space. The construction of the example assumes the continuum hypothesis.

1. Introduction. In recent years Arhangel'skiï [1], [2], Siwiec [10], and Michael [6] characterized images of certain kinds of spaces under certain kinds of mappings. These characterizations are summarized in Table 1 of [6], part of which we now reproduce:

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>strongly k'</td>
<td>countable</td>
<td>countably</td>
<td>countably</td>
</tr>
<tr>
<td></td>
<td>base</td>
<td>bi-sequential</td>
<td>bi-k</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>k'</td>
<td>Fréchet \mathcal{N}_0</td>
<td>Fréchet</td>
<td>singly bi-k</td>
</tr>
</tbody>
</table>

All the terms in this table are defined in [6]. Those terms having a direct bearing on the example in this paper will be defined in §2. The two entries in each of Columns C and D coincide in the presence of countable compactness; for Column C this was proved in [5, (D) and (C), p. 983], and for Column D in [3, Corollary 3 to Theorem 7] and in [8, Theorem 5.1]. In this note, we show this is not the case in Columns B and E. (It seems rather plausible that this should be so, because [7, Diagrams 1.2 and 1.3, Proposition 2.4] imply that, under rather mild restrictions (e.g., X Lindelöf, or Y a Fréchet space, or every $y \in Y$ a $G_δ$), Y countably compact and regular implies that every hereditarily quotient map $f: X \to Y$ is countably bi-quotient. Nevertheless, the answer for both Columns B and E is, in general, negative, as the following example shows. The construction of the example assumes the continuum hypothesis, which we indicate by [CH].

Received by the editors October 18, 1975.

Key words and phrases. k'-space, strongly k'-space, countably bi-k-space, singly bi-k-space.

1 The entries in Row 4 (respectively, Row 5) of [6, Table 1] are the images under countably bi-quotient (respectively, hereditarily quotient) maps of certain kinds of spaces. Those spaces are: (B) locally compact, paracompact spaces, (C) separable metrizable spaces, (D) metrizable spaces, and (E) paracompact M-spaces.

© American Mathematical Society 1977
Example 1.1 [CH]. There exists a completely regular, countably compact \(k' \)-space \(Y \) that is not countably bi-\(k \).

As the proof will show, \(Y \) actually has the following property, which is stronger than countable compactness: Every infinite subset of \(Y \) has an infinite subset with compact closure.

2. Some preliminaries. We begin with the appropriate definitions. A space \(Y \) is a \(k' \)-space [2, Chapter III, Definition 3.2] if whenever \(A \subset Y \) and \(y \in \overline{A} \) (the closure of \(A \)), then there exists a compact set \(K \subset Y \) such that \(y \in (A \cap K)^- \). A space \(Y \) is countably bi-\(k \) [6, Definition 4.E.1] if whenever \((A_n) \) is a decreasing sequence of subsets with a common accumulation point \(y \), then there exists a \(k \)-sequence \((K_n) \) such that \(y \in (A_n \cap K_n)^- \) for every \(n \). Here \((K_n) \) is called a \(k \)-sequence if: (1) \(K_n \supseteq K_{n+1} \) for every \(n \), (2) \(K = \cap_n K_n \) is compact, and (3) if \(U \supseteq K \) and \(U \) is open, then \(U \supseteq K_n \) for some \(n \).

In the construction of Example 1.1, the Stone-Cech compactification \(\beta N \) of the set \(N \) of nonnegative integers (with the discrete topology) plays a central role, and we make the convention that, for subsets of \(\beta N \), “closure” means closure in \(\beta N \). Thus the “closure” of any such set is necessarily compact. Following [4, 6.S, pp. 98–99], \(A' \) shall denote the boundary in \(\beta N \) of a subset \(A \) of \(N \). We remark that \(N' = \beta N \setminus N \) is closed in \(\beta N \) and refer to [4, ibid.] for more details.

It is worthwhile to establish some lemmas to aid in the construction of the example, the first of these lemmas to be of a set-theoretic nature.

Lemma 2.1. Let \(\{W_a\}_{a<\Omega} \) be a strictly decreasing family of sets indexed by the first uncountable ordinal \(\Omega \), let \(W = \cap_a W_a \), and let \(\{G_a\}_{a<\Omega} \) be any family of sets satisfying \(G_a \cap W \neq \emptyset \) for all \(a \) and \(\beta \). Then there exists an increasing function \(\phi: [0, \Omega) \to [0, \Omega) \) such that \(G_a \cap W_{\phi(a)} \neq \emptyset \) for all \(a \).

Proof. Let \(\phi(0) = 0 \) and \(x_0 \in G_0 \cap W_{\phi(0)} \). Suppose inductively that \(x_\alpha \in G_\alpha \cap W_{\phi(\alpha)} \) for every \(\alpha < \beta < \Omega \), and whenever \(\alpha < \gamma < \beta \), we have \(\phi(\alpha) < \phi(\gamma) \) and \(x_\alpha \notin W_{\phi(\gamma)} \). Define

\[
\phi(\beta) = \sup\{\min\{\gamma: x_\alpha \notin W_\gamma\}: \alpha < \beta\}
\]

and let \(x_\beta \in G_\beta \cap W_{\phi(\beta)} \). Then \(\phi \) is as required.

Lemma 2.2. If \(A \) and \(B \) are \(F_\alpha \) subsets of \(\beta N \), and if \(\overline{A} \cap B = A \cap \overline{B} = \emptyset \), then \(\overline{A} \cap \overline{B} = \emptyset \).

Proof. Since \(\beta N \) is normal, an easy induction shows that \(A \) and \(B \) can be separated by disjoint open sets \(U \) and \(V \). Since \(\beta N \) is extremally disconnected (see [4, 6.M, p. 96]), \(U \cap \overline{V} = \emptyset \).

We complete the preliminaries with the following technical lemma.

Lemma 2.3 [CH]. Suppose \(S \) is an open \(F_\alpha \) in \(N' \). Then there exist a decreasing family \(\{V_a\}_{a<\alpha} \) of open-closed subsets of \(N' \), and a subset \(P \) of \(N' \setminus \overline{S} \) satisfying the following conditions:
(a) $\{V_a\}_{a<\Omega}$ is a base for the neighborhoods of \overline{S} in N'.
(b) $P \setminus V_a$ is countable for all a.
(c) P is relatively discrete and, hence, nowhere dense in N'.
(d) If $A \subset N'$, if $A \setminus V_a$ is countable for all a, and if $A \cap P \subset \overline{S}$, then $\overline{A} \cap P \subset \overline{S}$.
(e) If F is open-closed in N', and if $(F \setminus \overline{S})^c \cap \overline{S} \neq \emptyset$, then $F \cap P \neq \emptyset$.

Proof. Let \mathcal{Q} be the collection of all open-closed sets in N' that contain S. Write $\mathcal{Q} = \{U_a : a < \Omega\}$, and let $B_a = N' \setminus U_a$. For each $\beta < \Omega$, S and $\bigcup \{B_a : a < \beta\}$ are disjoint open F_β's and hence have disjoint closures. Since these closures are compact, there exists an open-closed set in N' containing S and disjoint from $\bigcup \{B_a : a < \beta\}$. That is, $\bigcap \{U_a : a < \beta\}$ contains some U_γ. Let $W_0 = U_0$ and let W_β be the first U_γ contained in $U_\beta \cap (\bigcap \{W_a : a < \beta\})$. Then $\{W_a\}_{a<\Omega}$ is a decreasing family of open-closed subsets of N' and a base for the neighborhoods of $\overline{S} = \bigcap \{V_a : a < \Omega\}$, since each W_a is compact.

Let \mathcal{S} be the collection of all open-closed sets F in N' such that $(F \setminus \overline{S})^c \cap \overline{S} \neq \emptyset$. Write $\mathcal{S} = \{F_a : a < \Omega\}$. Since $F_a \setminus \overline{S}$ is open in N', the set G_a of P-points in $F_a \setminus \overline{S}$ is dense in $F_a \setminus \overline{S}$ (see [4, 6.V, p. 100]). Thus $G_a \cap \overline{S} \neq \emptyset$ and hence $G_a \cap W_\beta \neq \emptyset$ for all a and β. By Lemma 2.1, there exists an increasing function $\phi : [0, \Omega) \to [0, \Omega)$ such that for all a, $G_a \cap W_{\phi(a)} \setminus W_{\phi(a+1)} \neq \emptyset$. Let $V_a = W_{\phi(a)}$, and let P be the set obtained by choosing one P-point from each $F_a \cap V_{a+1}$. Thus (a), (b), and (e) are clearly satisfied. Since the sets $V_a \setminus V_{a+1}$ are open and pairwise disjoint, P is relatively discrete.

Since P is relatively discrete, P is locally compact and, hence, open in \overline{P}. If the interior in N' of \overline{P} were nonempty, then its intersection with P would be a nonempty open subset of N', in which case N' would have isolated points (again because P is relatively discrete), which it does not. Thus P is nowhere dense, and (c) is satisfied.

For (d), suppose $A \subset N'$, $A \setminus V_a$ is countable for all a, and $A \cap P \subset \overline{S}$. If $x \in (\overline{A} \cap P) \setminus \overline{S}$, then $x \notin V_a$ for some $a < \Omega$. Then x belongs to the closures of the two countable sets $A \setminus V_a$ and $P \setminus V_a$. Since a P-point cannot be an accumulation point of a countable set in N', $(A \setminus V_a)^c \cap P = \emptyset$. Since $A \cap P \subset \overline{S}$, $\overline{P} \cap A \setminus V_a = \emptyset$. By Lemma 2.2, $(A \setminus V_a)^c \cap P \setminus (A \setminus V_a)^c = \emptyset$, contradicting the fact that x is in this intersection. Hence $(\overline{A} \cap P) \setminus \overline{S} = \emptyset$, completing the proof of the lemma.

3. The construction and proof of the example. Partition N into an infinite collection of infinite subsets: $N = \bigcup_{n=1}^{\infty} S_n$, each S_n infinite, and $S_n \cap S_m = \emptyset$ if $n \neq m$. Let $S = \bigcup_{n=1}^{\infty} S_n'$. Then S is an open F_δ in N'. Assuming [CH], let $\{V_a\}_{a<\Omega}$ and P be as in Lemma 2.3.

Define $X = \beta N \setminus \overline{P}$, define $Y = X/\overline{S}$ (\overline{S} is identified to a point), and let f denote the (necessarily perfect) identification map $f : X \to Y$. Let s denote $f(\overline{s})$, considered as an element of Y. Observe $Y \setminus \{s\}$ is homeomorphic to $\beta N \setminus (P \cup S)$, and hence every point of $Y \setminus \{s\}$ has an open-closed, compact neighborhood.
First, we show \(X \), and hence \(Y \), is countably compact. Suppose \(A \subseteq X \) is countably infinite. We shall produce an infinite subset \(B \) of \(A \) with \(\overline{B} \) (necessarily compact) a subset of \(X \).

Case 1. \(A \cap N \) is infinite: Since \((A \cap N)' \) is open in \(N' \) and \(P \) is nowhere dense in \(N' \), \((A \cap N)' \setminus P \) is nonempty and open in \(N' \). Hence there is an infinite subset \(B \) of \(A \cap N \) such that \(\overline{B} \cap \overline{P} = \emptyset \). Thus \(\overline{B} \) is a compact subset of \(X \).

Case 2. \(A \cap N' \) is infinite: In this case, let \(B = A \cap N' \). Then \(\overline{B} \subseteq X \) by Lemma 2.3(d).

Next, \(Y \) is a \(k' \)-space. Let \(A \subseteq Y \) and \(y \) an accumulation point of \(A \). We must produce a compact set \(K \subseteq Y \) such that \(y \) is an accumulation point of \(A \cap K \). If \(y \neq s \), then \(y \) has a compact neighborhood and there is nothing to prove. We assume \(y = s \) and \(y \notin A \). Then \(f^{-1}(A)' \cap \overline{S} \neq \emptyset \).

Case 1'. \((f^{-1}(A) \cap N)' \cap \overline{S} \neq \emptyset \): Then \((f^{-1}(A) \cap N)' \) intersects \(S_n' \) for some \(n \), so \(f^{-1}(A) \cap S_n \) is infinite for this \(n \), in which case \(K = f(S_n') \) is compact and \(y \in (A \cap K)' \).

Case 2'. \((f^{-1}(A) \cap N')' \cap \overline{S} \neq \emptyset \): Let \(x_\alpha \in f^{-1}(A) \cap V_\alpha \) for each \(\alpha < \Omega \). Then \(\{x_\alpha : \alpha < \Omega\} \setminus P_\beta \) is countable for all \(\beta \), and \(\{x_\alpha : \alpha < \Omega\} \setminus P = \emptyset \), so by Lemma 2.3(d), \(\{x_\alpha : \alpha < \Omega\}' \subseteq X \). Then \(K = f(\{x_\alpha : \alpha < \Omega\}') \) as required.

Finally, \(Y \) is not countably bi-\(k \). Let \(A_n = \bigcup_{k>n} f(S_k) \). Then \(s \in \overline{A_n} \) for all \(n \). Suppose \((K_n) \) is a \(k \)-sequence with \(s \in \bigcap_n K_n = K \), where \(K \) is compact and \(s \in (A_n \cap K_n)' \) for all \(n \). Let \(B_n = f^{-1}(A_n \cap K_n) \). Then \(B_n \cap \overline{S} \neq \emptyset \) for all \(n \).

We claim \(B_n' \cap P \neq \emptyset \) for all \(n \). By Lemma 2.3(e), it suffices to show \((B_n' \cap \overline{S})' \cap \overline{S} \neq \emptyset \) for each \(n \). If this intersection were empty for some \(n \), then for some \(\alpha \), \((B_n' \cap \overline{S}) \cap V_\alpha = \emptyset \), so \(B_n' \cap \overline{V_\alpha} \) is a compact subset of \(\overline{S} \). Since \(B_n' \cap \overline{V_\alpha} \) is open in \(N' \), and \(N' \setminus S \) is a \(G_\delta \), \(B_n' \cap \overline{V_\alpha} \cap N' \setminus S \) is a \(G_\delta \) in \(N' \) that is contained in \(S \setminus S \), which has void interior in \(N' \). Therefore \(B_n' \cap \overline{V_\alpha} \cap N' \setminus S = \emptyset \). That is, \(B_n' \cap \overline{V_\alpha} \subseteq S = \bigcup_k S_k' \), and since we have an open (in \(N' \)) cover of a compact set, \(B_n' \cap \overline{V_\alpha} \subseteq \bigcup_{k<m} S_k' \) for some \(m \). Then

\[B_{n+m}' \cap \overline{V_\alpha} \subseteq \bigcup_{k<m} S_k' \cap (f^{-1}(A_{n+m})')' = \emptyset, \]

from which it follows that \(B_{n+m}' \cap \overline{S} = \emptyset \), a contradiction.

Let \(Q \) be the set obtained by choosing one point from each \(B_n' \cap P \). Then \(\overline{Q} \subseteq \overline{P} \setminus \overline{S} \) by Lemma 2.2. Hence, \(\overline{Q} \cap X = \emptyset \), so \(\overline{Q} \cap f^{-1}(K) = \emptyset \). Separating these two compact subsets of \(\beta N \), there exists an open-closed set \(U \subseteq \beta N \) such that \(\overline{Q} \subseteq U \) and \(f^{-1}(K) \cap U = \emptyset \). Then \(f(U \cap X) = \emptyset \) is closed in \(Y \), disjoint from \(K \), but intersects every \(K_n \), since \(Q \subseteq U \) implies \(U \cap B_n \neq \emptyset \) and, hence, \(f(U \cap X) \cap (A_n \cap K_n) \neq \emptyset \). That contradicts \((K_n) \) being a \(k \)-sequence and completes the proof.

4. Concluding comment. We conclude with a comment about the other entries in Column E of [6, Table 1]. Those other entries are: (1) paracompact
M-spaces, (2) spaces of pointwise countable type, (3) bi-k-spaces, and (6) k-spaces. We do not know whether there is an example of a countably compact bi-k-space that is not of pointwise countable type. Otherwise, none of the entries in Column E of [6, Table 1] coincide in the presence of countable compactness. If Y is the space of Example 1.1, then $Y \times I$ is a countably compact k-space that is not singly bi-k (using [6, Proposition 4.E.4]). Arhangel'skiǐ [3, p. 1187] has an interesting example of a sequentially compact countably bi-k-space that is not bi-k, and the ordinal space $[0, \Omega]$ is a countably compact space of pointwise countable type that is not a paracompact M-space. Other examples regarding [6, Table 1] are mentioned in [6] and [8].

I am very grateful to Ernest Michael for his helpful comments and suggestions.

REFERENCES

DEPARTMENT OF MATHEMATICS AND STATISTICS, MIAMI UNIVERSITY, OXFORD, OHIO 45056