A NOTE ON THE CONCORDANCE HOMOTOPY GROUP OF REAL PROJECTIVE SPACE

H. SCHNEIDER AND R. WELLS

Abstract. By means of the mapping torus construction the following theorem is proved.

Theorem. If \(r \equiv 3 \mod 4 \) and \(r \geq 7 \), and \(\mathcal{P}_r \) is a homotopy \(P_r \), then there is an isomorphism \(\pi_0 \text{Diff}^+ : \mathcal{P}_r \cong \pi_0 \text{Diff}^+ : P_r \).

1. Introduction. For a manifold \(M \), let \(\text{Diff}^+ (M) \) be the group of diffeomorphisms of \(M \) isotopic to diffeomorphisms leaving some nonempty open set fixed. Let \(\pi_0 \text{Diff}^+ : M \) denote that group factored by those concordant to the identity. Similarly, let \(\text{Diff}^+ (M, A) \) denote the subgroup of \(\text{Diff}^+ (M) \) of diffeomorphisms fixing \(A \), and let \(\pi_0 \text{Diff}^+ : (M, A) \) denote \(\text{Diff}^+ (M, A) \) factored by the subgroup of those concordant \(\mod A \) to the identity.

Let \(P_r \) denote real projective space of dimension \(r \). In [4], an author establishes an isomorphism \(\pi_0 \text{Diff}^+ : P_r \cong \pi_{r+1+k} (P_{\infty}/k) \) for \(r \equiv 11 \mod 16 \) and \(k = a_2^L - r - 1 \) with \(a \) a positive integer and \(L \) a large positive integer. Suppose \(M \) is a smooth closed, \((l - 1)\)-connected and oriented manifold of dimension \(n \) with \(l = \lfloor n/2 \rfloor \). Suppose \(\xi : M \to M \) is a free smooth involution; then there is an equivariant embedding \((S^l, -1) \subset (M, \xi) \) producing an embedding \(P_l \subset M/\xi \), and \(v(M/\xi) | P_l = k \eta \) where \(\eta \in KO(P_l) \) is the reduced canonical line bundle. The integer \(k \) is well defined \(\mod c(l) \), where \(c(l) \) is the order of \(KO(P_l) \), and its class \(\mod c(l) \) is called the type of \(\xi \). For \(k \) and \(l \) even, let

\[
I_{2l}(k) = \{(M, \xi) | M \sim S^l \times S^l, \text{type } \xi = k \}/\sim,
\]

where \(\sim \) means homotopy equivalent, and \(\sim \) means orientation-preserving equivariantly diffeomorphic. From [3] we recall that \(I_{2l}(k) \) has a canonical group structure, and that for \(l \equiv 6 \mod 8 \) and \(k = -2l/\mod c(l) \) we have an isomorphism \(\pi_{2l+k} (P_{\infty}/k) \cong I_{2l}(k) \). Thus we have for such \(l \) and \(k \) the isomorphism \(\pi_0 \text{Diff}^+ : B_{2l-1} \cong I_{2l}(k) \). We will say that a homotopy \(P_r \) is a smooth closed \(r \)-manifold \(\mathcal{P}_r \), homotopy equivalent to \(P_r \). It is the object of this note to find a generalization, for \(\mathcal{P}_r \), a homotopy \(P_r \) with \(r \equiv 3 \mod 4 \), of the isomorphism \(\pi_0 \text{Diff}^+ : B_{2l-1} \cong I_{2l}(k) \) above.

Received by the editors May 9, 1975 and, in revised form, May 5, 1976.

AMS (MOS) subject classifications (1970). Primary 57D50, 57D65, 57D90, 57E25.
In [1], the first author introduces abelian groups $I_n(k)$ generalizing the $I_{l2}(k)$ above. Suppose M is a smooth closed n-manifold homotopy equivalent to $S^{[n/2]} \times S^{[(n+1)/2]}$ and suppose $\xi : M \to M$ is a smooth free involution. Let $l = [n/2]$. We will say (M, ξ) is admissible if there exist disjoint copies, $P, P' \subset M/\xi$ of P_1 such that $P' \subset M/\xi - P$ is a homotopy equivalence. With n even, all free involutions are admissible, but when n is odd some are excluded. Then set

$$I_n(k) = \{(M, \xi) | M \sim S^{[n/2]} \times S^{[(n+1)/2]}, \text{type } S = k, \xi \text{ admissible} \}/\sim.$$

The equivalence relation \sim is the same as before when k is even—orientation preserving equivariant diffeomorphism—but when k is odd, it is only equivariant diffeomorphism. From [1] we recall that $I_n(k)$ has a canonical abelian group structure, provided $n > 6$; also from [1] we recall that there is an exact sequence of abelian groups

$$\cdots \to \mathcal{L}_{n+1}(Z_2, (-1)^k) \xrightarrow{\partial} I_n(k) \xrightarrow{p} \Omega_n(\lambda(l, k)) \xrightarrow{\partial} \mathcal{L}_n(Z_2, (-1)^k),$$

where $\mathcal{L}_n(Z_2, (-1)^k)$ is a certain quotient of the Wall surgery group $L_n(Z_2, (-1)^k)$, and $\Omega_n(\lambda(l, k))$ is a certain Lashof cobordism group. It follows, for example, that $I_n(k)$ is finitely generated.

Now we can state the main theorem of this note.

Theorem 2. If $r = 3 \mod 4$ and $r > 7$, and \mathcal{P}_r is a homotopy \mathcal{P}_r, then there is an isomorphism $\pi_0 \operatorname{Diff}^+ : \mathcal{P}_r \cong I_{r+1}(k)$ where $k = -r - 1 \mod c(l)$.

Corollary. If \mathcal{P}_r is a homotopy \mathcal{P}_r, $r = 3 \mod 4$ and $r > 7$, then $\pi_0 \operatorname{Diff}^+ : \mathcal{P}_r \cong \pi_0 \operatorname{Diff}^+ : \mathcal{P}_r$.

The theorem is an immediate consequence of the following theorem. If \mathcal{P}_r is a homotopy \mathcal{P}_r, there is an embedding, for $m = [r/2]$, unique up to isotopy $P_{m-1} \subset \mathcal{P}_r$ such that $\pi_1(\mathcal{P}_{m-1}) \to \pi_1(\mathcal{P}_r)$ is an epimorphism. Let N_r be a tubular neighborhood of P_{m-1} in \mathcal{P}_r. Let $f : \pi_0 \operatorname{Diff}^+ : (\mathcal{P}_r, N_r) \to \pi_0 \operatorname{Diff}^+ : \mathcal{P}_r$ be the forgetful homomorphism. Then we have the following:

Theorem 1. Let $r > 5$ and let \mathcal{P}_r be a homotopy \mathcal{P}_r. Then there is a homomorphism $\tau : \pi_0 \operatorname{Diff}^+ : (\mathcal{P}_r, N_r) \to I_{r+1}(k)$, where $k = -r - 1 \mod c(l)$, such that:

1. kernel $(\tau) \subset \text{kernel } (f)$,
2. $\tau(\text{kernel } (f)) \subset \partial \mathcal{L}_{r+2}(Z_2, (-1)^k)$,
3. τ is an epimorphism.

We continue to use the notation implicit above: Given r, we set $l = \lfloor (r + 1)/2 \rfloor$, $m = \lfloor r/2 \rfloor$, $c(l) = \text{order } \overrightarrow{KO}(P)$, $k = \text{class of } -r - 1 \mod c(l)$, and η_r = canonical line bundle over \mathcal{P}_r. If (M, N) is a smooth manifold pair, $\nu(N; M)$ denotes the normal bundle of N in M; $\tau(M)$ denotes the tangent bundle of M. If \mathcal{P}_r is a homotopy \mathcal{P}_r we have again the embedding $P_{m-1} \subset \mathcal{P}_r$ and its tubular neighborhood $N_r \subset \mathcal{P}_r$. Since \mathcal{P}_r is necessarily tangentially
homotopy equivalent to P_r and since $r - (m - 1) = l + 1 > (m - 1) + 1$, we have that N_r is a smooth embedding of the cell bundle associated with $(l + 1)\eta_{m-1}$. There is an obvious homomorphism $\pi_0 \text{Diff}^+ : (\mathcal{C}_r, N_r) \rightarrow \pi_0 \text{Diff}^+ : \mathcal{C}_r$.

To see that f is an epimorphism we introduce a homomorphism $d : \pi_0 \text{Diff}^+ : \mathcal{C}_r \rightarrow \mathbb{Z}_2$ defined as follows: If $x \in \pi_0 \text{Diff}^+ : \mathcal{C}_r$, we may choose a representative $\varphi : \mathcal{C}_r \rightarrow \mathcal{C}_r$ of x such that φ fixes \mathcal{P}_1 where $\mathcal{P}_1 \subset \mathcal{P}_{m-1}$. Then $d\varphi : \nu(P_1 : \mathcal{C}_r) \rightarrow \nu(P_1 : \mathcal{C}_r)$ represents a well-defined element $d(x) \in \widetilde{KO}^{-1}(P_1) = \mathbb{Z}_2$, and $x \rightarrow d(x)$ is a homomorphism.

Proposition 1. $d : \pi_0 \text{Diff}^+ : \mathcal{C}_r \rightarrow \mathbb{Z}_2$ is trivial.

Proof. We are indebted for the proof to R. Z. Goldstein. As in the definition of d, let φ represent x, such that φ fixes \mathcal{P}_1. Let $g \in H^1(S^1 : \mathbb{Z}_2)$ and $g' \in H^1(P_1 : \mathbb{Z}_2)$ be the nontrivial elements. Let $x(\varphi) \in H^1(S^1 \times P_1 : \mathbb{Z}_2)$ be 0 if $d(x) = 0$ and $pr^* g$ if $d(x) = 1$. Let $y = pr^* g'$. Let $S^1 \times \varphi \mathcal{C}_r$ be the mapping torus of φ. Then $S^1 \times \mathcal{P}_1 \subset S^1 \times \varphi \mathcal{C}_r$, and we have that the Stiefel-Whitney class

$$\omega(\nu(S^1 \times P_1 : S^1 \times \varphi \mathcal{C}_r)) = (1 + x(\varphi)(1 + y)^{-1}.$$

On the other hand, φ is homotopic to the identity, so $S^1 \times \varphi \mathcal{C}_r$ has the homotopy type of $S^1 \times P_1$ and $\omega(\tau(S^1 \times \varphi \mathcal{C}_r)|S^1 \times P_1) = (1 + y)^{-1}$, since $y^2 = 0$. The proposition is proved.

If $x \in \pi_0 \text{Diff}^+ : \mathcal{C}_r$, then there is a representative φ that fixes $P_{m-1} \subset \mathcal{C}_r$. We would like to find a representative that fixes N_r. The representative φ at most twists N_r by an element $d'(\varphi) \in \widetilde{KO}^{-1}(P_{m-1})$.

Proposition 2. $f : \pi_0 \text{Diff}^+ : (\mathcal{C}_r, N_r) \rightarrow \pi_0 \text{Diff}^+ : \mathcal{C}_r$ is an epimorphism.

Proof. The map $\widetilde{KO}^{-1}(P_{m-1}) \rightarrow \widetilde{KO}^{-1}(P_1)$ carries $d'(\varphi) \rightarrow d(x)$. This map is an isomorphism for $m \neq 0 \mod 4$, so we are done in that case by Proposition 1. If $m = 0 \mod 4$, then $\widetilde{KO}^{-1}(P_{m-1}) \equiv \widetilde{KO}^{-1}(P_1)$ is onto with infinite cyclic kernel. Then $d'(\varphi) \neq 0$ implies that $\nu(S^1 \times P_{m-1} : S^1 \times \varphi \mathcal{C}_r)$ has a nontrivial rational Pontrjagin class in dimension m, which is impossible, and the proposition is proved.

Now we construct the homomorphism $\tau : \pi_0 \text{Diff}^+ : (\mathcal{C}_r, N_r) \rightarrow I_{+1}(k)$ for $r \geq 5$. Briefly, it is the mapping torus construction followed by 'surgery' of $S^1 \times N_r \cup S^1_+ \times \mathcal{C}_r$. We construct a smooth manifold triad $(X; \partial_0 X, \partial_1 X)$ such that $\partial X = \partial_0 X \cup \partial_1 X$ and $\partial \partial_0 X = \partial \partial_0 X = \partial_0 X \cap \partial_1 X$ as follows: $X = D^2 \times \mathcal{C}_r$. With S^1_+ and S^1 the right and left hemispheres, respectively, we set $\Gamma = \text{closure} (\mathcal{C}_r - N_r)$, and $\partial_0 X = S^1_+ \times \Gamma$, and $\partial_1 X = S^1 \times N_r \cup S^1_+ \times P_1$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Now, if \(x \in \pi_0 \text{Diff}^+ : (\mathcal{D}_r, \mathcal{N}_r) \) is represented by \(\varphi \), the mapping torus \(S^1 \times \mathcal{D}_r \) contains a codimension 0 submanifold canonically isomorphic to \(S^1 \times \mathcal{N}_r \cup S^1 \times \mathcal{D}_r \). Thus we may construct a well-defined surgery' with \((X; \partial_0 X, \partial_1 X)\) in place of the usual \((D^{r+1}; S^r \times D^m, D^{r+1} \times S^{m-1})\): Set \(Y = \left((S^1 \times \mathcal{D}_r) \times [0,1]\right) \cup X \) where \(\partial_1 X \) is identified with \((S^1 \times \mathcal{N}_r \cup S^1 \times \mathcal{D}_r) \times 1 \) by means of the canonical diffeomorphism. Then \(\partial Y = \partial_0 Y \amalg \partial_1 Y \) with \(\partial_0 Y = (S^1 \times \mathcal{D}_r) \times 0 \) and \(\partial_1 Y \) the other component of \(\partial Y \). It is routine to check that \(\partial_1 Y \) is the orbit manifold of a representative of an element \(\tau(\varphi) \in I_{r+1}(k) \). This element \(\tau(\varphi) \) is well defined. If \(\varphi' \) is another representative of \(x \), there is a concordance fixed on \(\mathcal{N}_r \) from \(\varphi \) to \(\varphi' \). Constructing \(Y' \) for \(\varphi' \) as above, and a similar manifold for the concordance, we obtain an \(h \)-cobordism finally from \(\partial_1 Y \) to \(\partial_1 Y' \) so that \(\tau(\varphi') = \tau(\varphi') \). Thus the map \(\tau: \pi_0 \text{Diff}^+: (\mathcal{D}_r, \mathcal{N}_r) \to I_{r+1}(k) \) is well defined by \(\tau(x) = \tau(\varphi) \) for \(\varphi \) a representative of \(x \).

To see that \(\tau \) is a homomorphism, we describe \(\tau \) a different way. Recall from [1] that the orbit space \(Q \) of an element of \(I_{r+1}(k) \) is obtained by gluing two copies of \(E(m\eta_{l+1}) \) (the cell bundle associated with \(m\eta_{l+1} \)) by means of a diffeomorphism \(\varphi': \partial E(m\eta_{l+1}) \to \partial E(m\eta_{l+1}) \). Since an \((m+1) \)-plane bundle over \(F \) admitting a nonzero section and stably equivalent to \(m\eta_{l+1} \) is uniquely determined up to bundle equivalence, we have a diffeomorphism \(\Gamma \times 0 \cup \Gamma \times 1 \cong \partial E(m\eta_{l+1}) \) where \(\partial \Gamma \times 0 \) is glued to \(\partial \Gamma \times 1 \) by the identity. We have obvious homomorphisms

\[
\pi_0 \text{Diff}^+: (\mathcal{D}_r, \mathcal{N}_r) \to \pi_0 \text{Diff}^+: (\Gamma, \partial \Gamma) \to \pi_0 \text{Diff}^+: (\Gamma \times 0 \cup \Gamma \times 1, \Gamma \times 1) \to \pi_0 \text{Diff}^+: E(m\eta_{l+1}).
\]

If \(x \) is represented by \(\varphi \), and \(\varphi \to \varphi' \) under the above composition, it is straightforward to check that \(E(m\eta_{l+1}) \times 0 \cup \varphi E(m\eta_{l+1}) \times 1 \) represents \(\tau(x) \). Thus we have the commutative diagram:

\[
\begin{array}{ccc}
\pi_0 \text{Diff}^+: (\mathcal{D}_r, \mathcal{N}_r) & \xrightarrow{\tau} & \pi_0 \text{Diff}: \partial E(m\eta_{l+1}) \\
\downarrow & & \downarrow \\
I_{r+1}(k) & \xrightarrow{} &
\end{array}
\]

But the horizontal map is already a homomorphism, and according to [1] the vertical map is a homomorphism onto. It follows that \(\tau \) is a homomorphism.

Proposition 3. \(\text{kernel} \tau \subseteq \text{kernel} \phi \).

Proof. Suppose \(\tau(x) = 0 \) with \(\varphi \) a representative of \(x \). Then \(\tau(\varphi) \) has orbit space \(\partial E(m\eta_{l+2}) = \partial E \). Then we have \(S^1 \times \mathcal{D}_r = \partial (Y \cup E) \), where \(E \) is glued to \(Y \) along \(\partial Y_1 = \partial E \). We have \(S^1_+ \times \mathcal{D}_r \subset \partial (Y \cup E) \subset Y \cup E \), and
this composition of inclusions is a homotopy equivalence. Using an embedding $S^1_+ \times \mathbb{P}_r \times [0,1] \subset Y \cup E$ given by a boundary collar, an easy application of the relative h-cobordism theorem, as in [4], shows that there is a diffeomorphism $(S^1_+ \times \mathbb{P}_r, 1 \times \mathbb{P}_r) \cong (S^1 \times \mathbb{P}_r, 1 \times \mathbb{P}_r)$, which is the identity on the relative part. It follows that $f(x) = 0$, and Proposition 3 is proved.

Proposition 4. τ is an epimorphism.

Proof. Suppose $z \in I_{r+1}(k)$ has orbit space Q. We know $Q = E(m\eta_l + 1)$ or $E(m\eta_l + 1)$ for some diffeomorphism $\varphi: \partial E(m\eta_l + 1) \to \partial E(m\eta_l + 1)$; also $S^1_+ \times \Gamma = \partial_0 X$ is diffeomorphic to $E(m\eta_l + 1)$. Thus, the triad $(X; \partial_0 X, \partial_1 X)$ determines a surgery Y from $\partial_1 Y = Q$ to $\partial_0 Y$. It is routine to check that $\partial_0 Y \cong S^1 \times \mathbb{P}_r$ (e.g. as in [4]). By Proposition 2, we may take $\varphi \in \pi_0 \text{Diff}: (\mathbb{P}_r, N_r)$, and clearly $\tau(\varphi) = y$. Proposition 4 is proved.

Proof of Theorem 2. We need only to check that

$$\tau(\ker f) \subset \partial \mathbb{E}_{r+2}(Z_2, (-1)^k).$$

Recall the definition of the Lashof cobordism group appearing in the exact sequence of [1]. First, $P[l, k] \to^\lambda(k) BO$ is a fibration such that $P_\infty \to P[l, k] \to^\lambda(k) BO$ is the kth Moore-Postnikov factorization of a map $P_\infty \to BO$ classifying $k \eta_\infty$. Then $\Omega_{r+1}(\lambda(l, k))$ is the $(r + 1)$st Lashof cobordism group defined by the fibration $\lambda(l, k)$. The map $p: I_{r+1}(k) \to \Omega_{r+1}(\lambda(l, k))$ is defined as follows: If $z \in I_{r+1}(k)$ has orbit space Q, and $P \subset Q$ is one of the canonical embeddings of P_l in Q, then there is a commutative diagram

$$
\begin{array}{ccc}
P & \longrightarrow & P_\infty \\
\cap & & \searrow \\
Q & \longrightarrow & P[l, k] \\
\downarrow & & \downarrow \lambda(l, k) \\
& & BO
\end{array}
$$

with $Q \to BO$ a Gauss map. The obstructions are zero to finding a unique lift mod P_∞ of Q to $P[l, k]$. This lift represents an element of $\Omega_{r+1}(\lambda(l, k))$ which is well defined to be $p(z)$.

Let $x \in \ker f$ have representative φ and let $\tau(x) = z \in I_{r+1}(k)$, and let Y be the cobordism from $S^1 \times \mathbb{P}_r$ to Q, the orbit space of z. Since $x \in \ker f$, we have a diffeomorphism $S^1 \times \mathbb{P}_r \cong S^1 \times \mathbb{P}_r = \partial(D^2 \times \mathbb{P}_r)$. Gluing $D^2 \times \mathbb{P}_r$ to Y via this diffeomorphism we obtain a manifold Λ, which may be written $\Lambda = (D^2 \times \mathbb{P}_r) \times 0 \cup a(D^{2} \times \mathbb{P}_r) \times 1$ with gluing map an embedding $\alpha: (S^1 \times N_r \cup S^1_+ \times \mathbb{P}_r) \times 1 \subset (S^1 \times \mathbb{P}_r) \times 0$ such that $\alpha((t, \xi), 1) = ((t, \xi), 0)$ for $t \in S^1_+$. We consider the lifting problem set by the following diagram:
It can be solved iff the lifting problem set by the following diagram can be solved:

$$\begin{align*}
(S^1 \times N_r \cup S^1_+ \times \mathbb{R}_r) \times 1 & \xrightarrow{\beta} P_\infty \\
\cap & \\
(D^2 \times \mathbb{R}_r) \times 1 & \rightarrow P[l, k]
\end{align*}$$

where $(S^1 \times N_r \cup S^1_+ \times \mathbb{R}_r) \times 1 \rightarrow P_\infty$ is α followed successively by projection $(S^1 \times \mathbb{R}_r) \times 0 \rightarrow \mathbb{R}_r$ and then $\mathbb{R}_r \rightarrow P_\infty$. But $\varphi \in \text{Diff}^+ \mathbb{R}_r$ implies φ homotopic to the identity so there is a homotopy commutative diagram:

$$\begin{align*}
(S^1 \times N_r \cup S^1_+ \times \mathbb{R}_r) \times 1 & \xrightarrow{\beta} P_\infty \\
\cap & \\
(D^2 \times \mathbb{R}_r) \times 1 & \rightarrow P[l, k]
\end{align*}$$

From this diagram follows the solution of the second lifting problem, and so of the first. Let $\nu: \Lambda \rightarrow P[l, k]$ be that solution. Then $\nu|Q$ represents $p(z)$, and thus $0 = p(z) = p(\tau(x))$. From the exact sequence of [1], it follows that $\tau(x) \in \partial \mathcal{E}_{r+2}(Z_2, (−1)^k)$, the proof of Theorem 2 is complete.

Theorem 1 is an immediate consequence of Theorem 2 and the fact that $\mathcal{E}_s(z_2, +1) = 0$ for $s = 1 \mod 4$ [2].

Bibliography

Department of Mathematics, Roosevelt University, Chicago, Illinois 60605

Department of Mathematics, Pennsylvania State University, University Park, Pennsylvania 16802