Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Remote Access
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

Regularity of solutions to an abstract inhomogeneous linear differential equation


Author: G. F. Webb
Journal: Proc. Amer. Math. Soc. 62 (1977), 271-277
MSC: Primary 34G05; Secondary 47D05
MathSciNet review: 0432996
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ T(t),t \geqslant 0$, be a strongly continuous semigroup of linear operators on a Banach space X with infinitesimal generator A satisfying $ T(t)X \subset D(A)$ for all $ t > 0$. Let f be a function from $ [0,\infty )$ to X of strong bounded variation. It is proved that $ u(t){ = ^{{\text{def}}}}T(t)x + {\smallint ^{t0}}T(t - s)f(s)ds,x \in X$, is strongly differentiable and satisfies $ du(t)/dt = Au(t) + f(t)$ for all but a countable number of $ t > 0$.


References [Enhancements On Off] (What's this?)

  • [1] P. Benilan, Opérateurs m-accrétifs hémicontinus dans un espace de Banach quelconque, C. R. Acad. Sci. Paris Sér. A 278 (1974), 1029-1032. MR 50 #1064. MR 0348566 (50:1064)
  • [2] T. H. Hildebrandt, Introduction to the theory of integration, Academic Press, New York, 1963. MR 27 #4900. MR 0154957 (27:4900)
  • [3] E. Hille and R. S. Phillips, Functional analysis and semi-groups, rev. ed., Amer. Math. Soc. Colloq. Publ., vol. 31, Amer. Math. Soc., Providence, R. I., 1957. MR 19, 664. MR 0089373 (19:664d)
  • [4] T. Kato, Perturbation theory for linear operators, Springer-Verlag, New York, 1966. MR 34 #3324. MR 0203473 (34:3324)
  • [5] S. G. Kreĭn, Linear differential equations in Banach space, ``Nauka", Moscow, 1967; English transl., Transl. Math. Monographs, vol. 29, Amer. Math. Soc., Providence, R. I., 1972. MR 40 #508.
  • [6] A. Pazy, Approximation of the identity operator by semigroups of linear operators, Proc. Amer. Math. Soc. 30 (1971), 147-150. MR 44 #4568. MR 0287362 (44:4568)
  • [7] -, A class of semi-linear equations of evolution (to appear).
  • [8] R. S. Phillips, Perturbation theory for semi-groups of linear operators, Trans. Amer. Math. Soc. 74 (1953), 199-221. MR 14, 882. MR 0054167 (14:882b)
  • [9] B. Sz.-Nagy, Introduction to real functions and orthogonal expansions, Oxford Univ. Press, New York, 1965. MR 31 #5938. MR 0181711 (31:5938)
  • [10] G. F. Webb, Continuous nonlinear perturbations of linear accretive operators in Banach spaces, J. Functional Analysis 10 (1972), 191-203. MR 50 # 14407. MR 0361965 (50:14407)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 34G05, 47D05

Retrieve articles in all journals with MSC: 34G05, 47D05


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1977-0432996-3
PII: S 0002-9939(1977)0432996-3
Keywords: Strongly continuous semigroup, infinitesimal generator, inhomogeneous equation, strong bounded variation
Article copyright: © Copyright 1977 American Mathematical Society