Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Ranks of matrices over Ore domains


Authors: H. Bedoya and J. Lewin
Journal: Proc. Amer. Math. Soc. 62 (1977), 233-236
MSC: Primary 16A06
MathSciNet review: 0437573
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let R be a Noetherian Ore domain. Then rank M = inner rank M for every matrix M over R if and only if R is projective-free of global dimension at most 2.


References [Enhancements On Off] (What's this?)

  • [1] G. Bergman, Commuting elements in free algebras and related topics in ring theory, Thesis, Harvard University, 1967.
  • [2] Karl W. Gruenberg, Cohomological topics in group theory, Lecture Notes in Mathematics, Vol. 143, Springer-Verlag, Berlin-New York, 1970. MR 0279200
  • [3] Irving Kaplansky, Fields and rings, 2nd ed., The University of Chicago Press, Chicago, Ill.-London, 1972. Chicago Lectures in Mathematics. MR 0349646
  • [4] David Lissner and Anthony Geramita, Remarks on 𝑂𝑃 and Towber rings, Canad. J. Math. 22 (1970), 1109–1117. MR 0271089

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 16A06

Retrieve articles in all journals with MSC: 16A06


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1977-0437573-6
Keywords: Rank of matrices, Ore domain
Article copyright: © Copyright 1977 American Mathematical Society