SPIN MANIFOLDS ARE DECOMPOSABLE

R. E. STONG

Abstract. It is shown that in the unoriented cobordism ring every manifold with Spin structure is decomposable.

1. Introduction. From the work of Thom [3], the unoriented cobordism ring \(\mathfrak{n}_* \) is a polynomial ring over \(\mathbb{Z}_2 \) on generators \(x_i \) of dimension \(i \), with \(i \neq 2^k - 1 \), and the manifold \(M^i \) is indecomposable if and only if the characteristic number \(S_i[M^i] \) is nonzero.

Dold [2] exhibited odd dimensional manifolds which are suitable generators, and these generators are in fact orientable manifolds. No even dimensional oriented manifold can be indecomposable, since

\[
S_{2n}[M^{2n}] = Sq^{1}S_{2n-1}[M^{2n}] = w_1S_{2n-1}[M^{2n}].
\]

An examination of the known examples for generators quickly reveals that none admit Spin structures. This is not a coincidence, for one has

Proposition. Every Spin manifold is decomposable.

2. Proof. Since a Spin manifold is oriented, even dimensional Spin manifolds are decomposable. Further, if \(M \) is a Spin manifold of dimension \(4n + 1 \),

\[
S_{4n+1}[M] = Sq^2S_{4n-1}[M] = v_2S_{4n-1}[M] = 0.
\]

Now, let \(M \) be a Spin manifold of dimension \(4n + 3 \).

Claim. If \(j \leq n \), and \(x \in H^{n-j}(M; \mathbb{Z}_2) \), then \(x^4S_{4j+3}[M] = 0 \). This is clear for \(j = 0 \), since \(S_3 \) is zero, and inductively it may be assumed if \(j' < j \).

Now \(Sq^1S_{4j+3} = S_{4j+4} = S_{2j+2} = Sq^1(S_{2j+2}S_{2j+1}) \), and by Proposition 6.1 of [1], \(ker Sq^1 \) is im \(Sq^1 \) in \(H^*(B \text{Spin}; \mathbb{Z}_2) \) except in dimensions divisible by four. Thus \(S_{4j+3} = S_{2j+2}S_{2j+1} + Sq^1 \sigma \) for some \(\sigma \), and

\[
x^4S_{4j+3}[M] = x^4S_{2j+2}S_{2j+1}[M] + Sq^1(x^4\sigma)[M] = x^4S_{2j+2}S_{2j+1}[M].
\]

If \(j \) is odd, \(2j + 1 = 4j' + 3 \), \(j' < j \) and

\[
x^4S_{2j+2}S_{2j+1}[M] = (xS_{(j+1)/2})^4S_{4j'+3}[M] = 0.
\]

If \(j \) is even,
\[x^4 S_{2j+2} S_{2j+1} [M] = x^4 S_{2j+2} S^2 S_{2j-1} [M] \]
\[= x^4 S^2 (S_{2j+2}) S_{2j-1} [M] \]
\[= x^4 S_{2j+4} S_{2j-1} [M] \]
\[= (x S_{(j+1)/2})^4 S_{2j-1} [M], \]

which is zero, since \(2j - 1 = 4j' + 3, j' < j\).

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF VIRGINIA, CHARLOTTESVILLE, VIRGINIA 22901