UNIQUE HAHN-BANACH EXTENSIONS AND SIMULTANEOUS EXTENSIONS

MORISUKE HASUMI

ABSTRACT. In this note we mention certain connections existing between unique Hahn-Banach extensions and simultaneous extensions. We also describe an application of a continuous selection theorem to simultaneous extensions.

1. Effects of unique Hahn-Banach extensions. Let \((m)\) be the Banach space of bounded sequences of real (or complex) numbers with the supremum norm and \((c_0)\) the subspace of \((m)\) consisting of sequences converging to zero. Then the following holds, which is ascribed to H. P. Rosenthal (cf. Banilower [1, Proposition 1.2]): If \(T\) is a linear operator from \((m)\) into a normed linear space \(F\) with \(\|T\| = 1\) such that \(T\) is an isometry on \((c_0)\), then \(T\) is an isometry on \((m)\). If, moreover, \(F = (m)\) and \(T\) is the identity operator on \((c_0)\), then \(T\) is the identity operator on \((m)\). Our first objective is to describe principles underlying this result.

Let \(E\) be a normed linear space with dual \(E^*\), \(L\) a subspace of \(E\), \(T\) a linear operator from \(E\) into a normed linear space \(F\) with \(\|T\| = 1\) such that \(T\) is an isometry on \(L\), and \(M = T(L)\), which is considered as a subspace of \(F\). These notations are preserved through this section. Let \(S^*(E, L)\) be the set of \(x^* \in E^*\) with \(\|x^*\| = 1\) such that \(x^*|L = y^*|L\) implies \(x^* = y^*\) if \(\|y^*\| \leq 1\). If \(x^* \in S^*(E, L)\), then \(\|x^*|L\| = 1\) and \(x^*\) is the unique Hahn-Banach extension of \(x^*|L\) to \(E\). We denote by \(E^*(L)\) the subspace of \(E^*\) generated by the \(\sigma(E^*, E)-\)closed convex hull of \(S^*(E, L)\) and by \(E^*(L)\) the orthogonal complement of \(E^*(L)\) in the space \(E\). By the Krein-Šmulian theorem (cf. Dunford [3, V.5.8]), \(E^*(L)\) is \(\sigma(E^*, E)-\)closed. For a given subset \(D\) of \(E\) we say that an element \(x \in E\) is orthogonal to \(D\) if \(\|x + cx'\| \geq \|x\|\) for any \(x' \in D\) and any scalar \(c\). Consider the case in which \(D\) is a closed subspace. Since \(D^⊥\), the orthocomplement of \(D\) in \(E^*\), is regarded as the dual of the quotient space \(E/D\), we have

\[
\|x\| \geq \inf\{\|x + x'\| : x' \in D\} = \sup\{\|\langle x, x^* \rangle\| : x^* \in D^⊥ \text{ and } \|x^*\| = 1\}.
\]
The equality sign prevails if and only if \(x \) is orthogonal to \(D \). As for the isometric property of \(T \) we have the following

Theorem 1. \(|T_x| = |x|\) for \(x \in E \), if either \(x \in L \) or \(x \) is orthogonal to the subspace \(E^*(L)^\perp \).

Proof. Take any \(x^* \in S^*(E,L) \) and set \(v^* = x^* \circ (T|L)^{-1} \). Then \(v^* \) is a linear functional on the subspace \(M = T(L) \) and \(|v^*| = |x^*| |L| = |x^*| = 1\), for \(T \) is an isometry on \(L \). Let \(y^* \) be any Hahn-Banach extension of \(v^* \) to \(F \). \(y^* \circ T \) is then a Hahn-Banach extension of \(x^* |L \) and therefore \(x^* = y^* \circ T \). For any \(x \in E \) we have \(|T_x| \geq |\langle T_x,y^* \rangle| = |\langle x,y^* \circ T \rangle| = |\langle x,x^* \rangle| \) and so \(|T_x| \geq \sup \{ |\langle x,x^* \rangle| : x^* \in S^*(E,L) \}\). If \(x \) is orthogonal to \(E^*(L)^\perp \), then the above remark with \(D = E^*(L)^\perp \) shows that

\[
|v| = \sup \{ |\langle x,x^* \rangle| : x^* \in S^*(E,L), |x^*| = 1 \}
\]

isometries. If \(x \in L \), then \(|F_x| = |x|\), for \(F \) is an isometry on \(L \).

Corollary 2. If \(E^*(L) = E^* \), then \(T \) is an isometry on \(E \).

After Phelps [7] we say that a subspace \(L \) of \(E \) has property \(U \) in \(E \) if every bounded linear functional on \(L \) has a unique Hahn-Banach extension to \(E \), i.e., \(S^*(E,L) \) coincides with the set of \(x^* \in E^* \) for which \(|x^*| = |x^*| |L| = 1\).

Corollary 3. If \(L \) has property \(U \) in \(E \) and if \(E \subseteq L^{**} \), then \(T \) is an isometry on \(E \).

We next consider another aspect of Rosenthal's result. For a subset \(\mathcal{L} \) of \(L^* \) let \(H(E,\mathcal{L}) \) be the set of \(x \in E \) such that all Hahn-Banach extensions from \(L \) to \(E \) of any element in \(\mathcal{L} \) coincide at \(x \). \(H(E,\mathcal{L}) \) is the largest subspace of \(E \) containing \(L \) to which every element in \(\mathcal{L} \) has a unique Hahn-Banach extension.

Theorem 4. Let \(\mathcal{L} \subseteq L^* \) be such that the set of \(y^* \in F^* \) for which \((y^* \circ T)|L \in \mathcal{L} \) and \(|y^*| = |y^*| |M| \) separates points of \(F \). If \(T_1 \) is a linear operator from \(E \) into \(F \) such that \(|T_1| = 1 \) and \(T_1|L = T|L \), then \(T_1(x) = T(x) \) for any \(x \in H(E,\mathcal{L}) \).

Proof. Let \(x \in H(E,\mathcal{L}) \) and suppose, on the contrary, that \(T_1(x) \neq T(x) \). By the hypothesis on \(F \) there exists a \(y^* \in F^* \) such that \((y^* \circ T)|L \in \mathcal{L} \) and \(|y^*| = |y^*| |M| \) and \(\langle T_1(x),y^* \rangle \neq \langle T(x),y^* \rangle \). Since \(y^* \circ T \) and \(y^* \circ T_1 \) are Hahn-Banach extensions to \(E \) of the functional \((y^* \circ T)|L \in \mathcal{L} \), they coincide at the point \(x \), which contradicts the choice of \(y^* \).

Corollary 5. If \(E = H(E,L^*) \) and the set of \(y^* \in F^* \) with \(|y^*| = |y^*| |M| \) separates points of \(F \), then \(T \) is uniquely determined by its values on \(L \).
The condition on F given in this corollary is satisfied if $F \subseteq M^{**}$, because M^* separates points of M^{**} and the norm of each $\nu^* \in M^*$ is the same as the norm of ν^* as a linear functional on M^{**} (and so as a linear functional on F).

Corollary 6. Suppose that (i) L has property U in E, (ii) $E^*(L) = E^*$, (iii) the set of $y^* \in F^*$ with $\|y^*\| = \|\nu^*|_M\|$ separates points of F. Then T is an isometry and is determined by its values on L.

Example 1. Let Σ be a compact Hausdorff space and Σ_0 a closed subset of Σ. If $C(\Sigma)$ denotes the Banach space of continuous real (or complex) functions on Σ with the supremum norm, then the subspace $C(\Sigma|\Sigma_0) = \{f \in C(\Sigma) : f|\Sigma_0 = 0\}$ has property U in $C(\Sigma)$ (cf. Phelps [7]). If $\Sigma|\Sigma_0$ is dense in Σ, then it is easy to see that $C(\Sigma)$ is contained in the second dual of $C(\Sigma|\Sigma_0)$. If βN denotes the Čech compactification of the set N of positive integers, then (m) is isometrically isomorphic with $C(\beta N)$ and (c_0) with $C(\beta N|\beta N \setminus N)$. Hence (c_0) has property U in (m) and moreover $(m) = (c_0)^{**}$. So Rosenthal's result cited above follows from Corollaries 2 and 6.

Concerning property U, we know that every two-sided ideal I of a C^*-algebra A has this property in A, of which the pair $((c_0),(m))$ is a special case. A much stronger result is contained in Dixmier [2, Proposition 2.11.7]. It is also seen that every hereditary subalgebra of a C^*-algebra A has property U in A.

Example 2. We need neither the property U for L nor the fact like $E \subseteq L^{**}$ in order to assert that T is an isometry. This is illustrated by the well-known example in Korovkin's theory of approximation. Let $E = C([0,1])$ be the space of all continuous real (or complex) functions on the closed interval $[0,1]$ and L the subspace of E spanned by three functions; 1, t and t^2. Although L does not have property U in E, every evaluation functional $\varepsilon_a : f \to f(a)$ with $a \in [0,1]$ on the space L has a unique Hahn-Banach extension, namely $\varepsilon_{a,t}$ to E. Since the set $\delta = \{\varepsilon_a : a \in [0,1]\}$ coincides with the set of extreme points of the unit ball of E^* and is contained in $\delta^*(E,L)$, we see that $E^*(L) = E^*$. So Corollary 2 applies to this case. On the other hand, we have $E = H(E,\delta|L)$. If the set of $y^* \in F^*$ for which $y^* \circ T = \varepsilon_a$ on L for some $a \in [0,1]$ separates points of F, then T is uniquely determined by its values on L. In particular, if T is a linear operator from $C([0,1])$ into itself with $\|T\| = 1$ and if $T(1) = 1, T(t) = t$ and $T(t^2) = t^2$, then T is the identity operator on $C([0,1])$.

Example 3. Let $E = (m)$. Then the subspace (c_0) has a proper closed subspace L for which $E^*(L) = E^*$. Let $(a_n : n = 1, 2, \ldots)$ be a sequence such that, for each k, $|a_k| < \sum_{n \neq k} |a_n| < \infty$ and L the set of all sequences $x = (x_1, x_2, \ldots)$ in (c_0) with $\sum_{n=1}^{\infty} a_n x_n = 0$. It is clear that L is a closed subspace of (c_0). It is also easy to see that each evaluation functional $\varepsilon_n : x \to x_n$ has a unique Hahn-Banach extension to (c_0) and consequently to E. It follows that $E^*(L) = E^*$ and Corollary 2 applies to this L. L does not contain any nontrivial ideal of (c_0) (or (m)) and thus does not have property
U in \((c_0)\) (or \((m)\)). This last fact has been observed by S. Takahasi in a more general situation. It is seen also that \(L^{**}\) is strictly smaller than \((m)\).

Here we include the following very slight modification of Kurtz’s theorem [6, Theorem 3].

Proposition 7. Let \(S\) be a subset of the unit sphere \(\{y^* \in F^* : \|y^*\| = 1\}\) in \(F^*\) such that \(y^* \circ T \in S^*(E, L)\) for any \(y^* \in S\). Let \(\{T_x\}\) be a net of linear operators from \(E\) into \(F\) with \(\|T_x\| \leq 1\) such that \(\|T_x x - Tx\| \to 0\) for all \(x \in L\). Then, for each \(x \in E\), \(\langle T_x x, y^* \rangle \to \langle Tx, y^* \rangle\) uniformly on all \(\sigma(F^*, F)\)-compact subsets of \(S\). In particular, if \(S\) contains the \(\sigma(F^*, F)\)-closure of the extreme points of the unit sphere in \(F^*\), then \(\|T_x x - Tx\| \to 0\) for each \(x \in E\).

2. Simultaneous extensions. Let \(\Sigma\) be a completely regular Hausdorff space and \(C(\Sigma)\) the Banach space of all bounded continuous real (or complex) functions on \(\Sigma\) with the supremum norm. Let \(\Omega\) be a subspace of \(\Sigma\). If \(X\) and \(Y\) are subspaces of \(C(\Omega)\) and \(C(\Sigma)\), respectively, then a simultaneous extension is, by definition, a linear bounded operator \(T\) from \(X\) into \(Y\) such that \(T(f)|\Omega = f\) for all \(f \in X\). The result of Phelps cited above implies the following, which extends Banilower [1, Corollary 1.3].

Proposition 8. Let \(\Sigma\) be a completely regular Hausdorff space and \(\Omega\) a locally compact subspace of \(\Sigma\). Let \(C_0(\Omega)\) be the subspace of \(C(\Omega)\) consisting of elements \(f\) which vanish at infinity. If \(T\) is a linear operator from \(C(\Omega)\) into \(C(\Sigma)\) with \(\|T\| = 1\) and \(T|C_0(\Omega)\) is a simultaneous extension, then \(T\) is a simultaneous extension.

Proof. Let \(R: C(\Sigma) \to C(\Omega)\) be the restriction operator. Then \(R \circ T\) maps \(C(\Omega)\) into \(C(\Omega)\). Our assumption says that \(\|R \circ T\| = 1\) and \(R \circ T\) induces the identity operator on \(C_0(\Omega)\). By Corollary 5, \(R \circ T\) is the identity operator, as was to be proved.

The examples in §1 furnish other kinds of simultaneous extensions. For instance we have

Proposition 9. Let \(\varphi\) be a homeomorphism of \([0, 1]\) into a completely regular Hausdorff space \(\Sigma\) and \(T\) a linear operator from \(C([0, 1])\) into \(C(\Sigma)\) with \(\|T\| \leq 1\). If \(T\) induces a simultaneous extension on the space spanned by \(1, t, t^2\) in the sense that \((Tf)(\varphi(t)) = f(t)\) for \(f = 1, t, t^2\), then the same equality holds for any \(f \in C([0, 1])\).

Finally we extend [1, Proposition 1.4 and Theorem 1.5].

Lemma 10. Let \(\Sigma\) be a compact Hausdorff space and \(\Omega\) a completely regular Hausdorff space which is extremally disconnected in the sense that the closure of every open set in \(\Omega\) is open. If \(V\) is a linear isometric operator from \(C(\Omega)\) into \(C(\Sigma)\), then there exists a homeomorphism \(\pi\) from \(\Omega\) into \(\Sigma\) such that, for any \(f \in C(\Omega)\) and any \(x \in \Omega\),

\[
(1) \quad \|(V(1))(\pi(x))\| = 1,
\]
Proof. Since V is an isometry, the transposed mapping V^* of V maps the closed unit ball $B^*(\Sigma)$ of the dual $C(\Sigma)^*$ onto the closed unit ball $B^*(\Omega)$ of $C(\Omega)^*$. For each $x \in \Omega$ let ε_x be the evaluation functional $f \rightarrow f(x)$ on $C(\Omega)$. Since $C(\Omega)$ and $C(\beta \Omega)$ are isometrically isomorphic under the canonical mapping, we see that ε_x is an extreme point of the ball $B^*(\Omega)$. So the set \((V^*)^{-1}(\varepsilon_x) \cap B^*(\Sigma) (= K(x), \text{say})\) is a support of $B^*(\Sigma)$, which is convex and weakly* compact. Let μ be an extreme point of $K(x)$, which exists by the Krein-Milman theorem. Since $K(x)$ is a support of $B^*(\Sigma)$, μ is an extreme point of $B^*(\Sigma)$, so that there exist a point $y \in \Sigma$ and a number α, $|\alpha| = 1$, satisfying $\mu = \alpha^{-1} \varepsilon_y$ in view of [4, Lemma 7]. Thus, for each $x \in \Omega$, there exist a point $y \in \Sigma$ and a number α with $|\alpha| = 1$ such that
\[
(V(f))(y) = \langle V(f), \varepsilon_y \rangle = \langle f, \alpha V^*(\mu) \rangle = \langle f, \alpha \varepsilon_y \rangle = \langle f, \alpha \varepsilon_x \rangle = \alpha f(x)
\]
for all $f \in C(\Omega)$. We define, for each $x \in \Omega$, $\psi(x)$ to be the set of all $y \in \Sigma$ such that there exists a number $\alpha(y)$ with $|\alpha(y)| = 1$ satisfying $\langle V(f))(y) = \alpha(y) f(y)$ for all $f \in C(\Omega)$. It is easy to see that $\psi(x)$ is closed for every $x \in \Omega$ and the mapping $\psi: x \rightarrow \psi(x)$ is an upper semicontinuous mapping from Ω into the family of nonvoid compact subsets of Σ, i.e., $\{x \in \Omega: \psi(x) \subseteq \Sigma'\}$ is open in Ω if Σ' is open in Σ. By use of a continuous selection theorem [5, Theorem 1.1] we can find a continuous mapping π from Ω into Σ such that $\pi(x) \in \psi(x)$ for any $x \in \Omega$. Since the subsets $\psi(x)$ are mutually disjoint, π is one-to-one. We have shown that, for any $f \in C(\Omega)$ and any $x \in \Omega$, \((V(f))(\pi(x)) = \alpha(\pi(x)) f(x)\). If $f = 1$, then we have \((V(1))(\pi(x)) = \alpha(\pi(x))\) for any $x \in \Omega$. Since $|\alpha(y)| = 1$, we have proved the statements (1) and (2). Finally let $\{x_\lambda\}$ be a net in Ω, $x_\lambda \in \Omega$ and suppose that $\pi(x_\lambda)$ tend to $\pi(x)$. Then (2) implies that $f(x_\lambda)$ tend to $f(x)$ for any $f \in C(\Omega)$. Since Ω is completely regular, we see that $x_\lambda \rightarrow x$ in Ω. Hence π is a homeomorphism.

Theorem 11. Let Σ be a compact Hausdorff space and Ω an extremely disconnected, completely regular Hausdorff space. Then $C(\Sigma)$ contains a subspace isometrically isomorphic to $C(\Omega)$ if and only if there exists a subspace Σ_0 of Σ such that Σ_0 is homeomorphic with Ω and there is a simultaneous extension T from $C(\Sigma_0)$ into $C(\Sigma)$ with norm one.

Proof. We have only to prove the necessity of the theorem. Let V be a linear isometric mapping from $C(\Omega)$ into $C(\Sigma)$. Then there exists a homeomorphism π from Ω into Σ satisfying the condition of the preceding lemma. We set $\Sigma_0 = \pi(\Omega)$. Define $Q: C(\Sigma_0) \rightarrow C(\Omega)$ by setting
\[
(Q(g))(x) = g(\pi(x))/(V(1))(\pi(x)).
\]
We see that Q is a linear isometry from $C(\Sigma_0)$ onto $C(\Omega)$ and therefore that
$T = V \circ Q$ is an isometry from $C(\Sigma_0)$ into $C(\Sigma)$, which is easily seen to be a simultaneous extension from $C(\Sigma_0)$ into $C(\Sigma)$, as was to be proved.

This theorem is reduced to [1, Theorem 1.5], when Ω is the discrete space of positive integers.

REFERENCES

DEPARTMENT OF MATHEMATICS, IBARAKI UNIVERSITY, MITO, IBARAKI, JAPAN

Current address: Institut Mittag-Leffler, Auravägen 17, S-18262 Djursholm, Sweden