ADDENDUM TO

"A FIXED POINT THEOREM FOR HYPERSPACES
OF λ CONNECTED CONTINUA"

CHARLES L. HAGOPIAN

When defining f^* in lines 13–15 on p. 232 of [1], we must assume that the complementary domain U of $f[Bd B]$ that contains $f[D_4]$ is unbounded. Hence it may be necessary to adjust the position of $f[D]$ in E^2. The adjustment must be made without changing the way $f[Bd D']$ separates $f[D]$ in E^2. This can be accomplished by moving the point at infinity in the one-point compactification of E^2 to a point of $U - f[D]$. The following argument shows that $U - f[D]$ is not empty.

Let

$V = \{(x, y) : x = 6$ and $0 < y < 6\}$,

$Q_1 = \{(x, y) : 11/2 < x < 6$ and $0 < y < 6\}$, and

$Q_2 = \{(x, y) : 5 < x < 11/2$ and $0 < y < 6\}$.

Assume U is a subset of $f[D]$. It follows that $f[Q_2]$ separates $f[V]$ from $f[Bd B]$ in E^2. To see this assume the contrary. Let A be an arc in the closure of U that goes from $f[V]$ to $f[Bd B]$ and misses $f[Q_2]$. Since f is a $1/2$-map, $f[Q_1]$ and $f[Bd B]$ are disjoint. Hence $f[Q_1]$ does not contain A. Let z be the last point of A that belongs to $f[Q_1]$. Since A is in $f[D] - f[Q_2]$, every point of A that follows z is in $f[D_2 - B]$. Hence z belongs to $f[D_2 - B]$, which contradicts the fact that f is a $1/2$-map. Therefore $f[Q_2]$ separates $f[V]$ from $f[Bd B]$ in E^2.

For $i = 1, 2,$ and 3, let $T_i = \{(x, y) : 5 < x < 11/2$ and $2i - 2 < y < 2i\}$. The continuum $f[Q_2]$ is the union of $H = f[T_1] \cup f[T_2]$ and $K = f[T_2] \cup f[T_3]$. Furthermore, $H \cap K$ is the continuum $f[T_2]$. It follows from Janiszewski's theorem [3, Theorem 20, p. 173] that either H or K separates $f[V]$ from $f[Bd B]$ in E^2.

Assume without loss of generality that H separates $f[V]$ from $f[Bd B]$ in E^2. Let $W = \{(x, y) : 1 < x < 6$ and $y = 5\}$. The continuum $f[W]$ meets both $f[V]$ and $f[Bd B]$. Since f is a $1/2$-map, $f[W]$ misses H. This contradicts the

Received by the editors July 23, 1976.

Key words and phrases. Hyperspace, chainable continua, arc-like continua, circle-like continua, fixed point property, lambda connectivity, hereditarily decomposable continua, disk-like continua, triod, snake-like continua, unicoherence, e-map into the plane, antipodal points, Borsuk-Ulam theorem.

© American Mathematical Society 1977

374
assumption that H separates $f[V]$ from $f[Bd B]$ in E^2. It follows that $f[D]$ does not contain U.

The theorem referred to in the last sentence in the proof of Theorem 2 of [1] should be compared with an earlier theorem of W. T. Ingram [2, Theorem 5].

In the second sentence in the proof of Theorem 3 of [1], we should also refer to J. T. Rogers' theorem [4, Proposition 2.2].

REFERENCES

Department of Mathematics, California State University, Sacramento, California 95819