Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

Cartesian closed topological hulls


Authors: H. Herrlich and L. D. Nel
Journal: Proc. Amer. Math. Soc. 62 (1977), 215-222
MSC: Primary 18D15
MathSciNet review: 0476831
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown in this paper that if a concrete category $ \mathfrak{A}$ admits embedding as a full finitely productive subcategory of a cartesian closed topological (CCT) category, then $ \mathfrak{A}$ admits such embedding into a smallest CCT category, its CCT hull. This hull is characterized internally by means of density properties and externally by means of a universal property. The problem is posed of whether every topological category has a CCT hull.


References [Enhancements On Off] (What's this?)

  • [1] P. Antoine, Étude élémentaire des catégories d'ensembles structurés. I, II, Bull. Soc. Math. Belge 18 (1966), 142-164; ibid 18 (1966), 387-414. MR 34 #220; 35 #4135.
  • [2] A. Bastiani, Applications différentiables et variétés différentiables de dimension infinite, J. Analyse Math. 13 (1964), 1-114. MR 31 #1540. MR 0177277 (31:1540)
  • [3] H. L. Bentley, H. Herrlich and W. A. Robertson, Convenient categories for topologists, Comment. Math. Univ. Carolinae 17 (1976), 207-227. MR 0425890 (54:13840)
  • [4] E. Binz, Bemerkungen zu limitierten Funktionenalgebren, Math. Ann. 175 (1968), 169-184. MR 36 #4513. MR 0221461 (36:4513)
  • [5] -, Continuous convergence on $ C(X)$, Lecture Notes in Math., vol. 469, Springer-Verlag, Berlin and New York, 1975.
  • [6] E. Binz and H. H. Keller, Funktionenräume in der Kategorie der Limesräume, Ann. Acad. Sci. Fenn. Sec. AI 383 (1966), 1-21. MR 34 #6706. MR 0206890 (34:6706)
  • [7] G. Bourdaud, Espaces d'Antoine et semi-espaces d'Antoine, Cahiers Topologie Géom. Différentielle 16 (1975), 107-134. MR 0394529 (52:15330)
  • [8] -, Deux caractérisations des c-espaces, C.R. Acad. Sci. Paris Sér A-B 281 (1975), A313-A316. MR 0380700 (52:1597)
  • [9] -, Some cartesian closed topological categories of convergence spaces, Proc. Internat. Conf. Categorical Topology (Mannheim 1975), Lecture Notes in Math., vol. 540, Springer-Verlag, Berlin and New York, 1976, pp. 93-108. MR 0493924 (58:12880)
  • [10] M. Chartrelle, Construction de catégories auto-dominées, C.R. Acad. Sci. Paris Sér. A-B 274 (1972), A388-A391. MR 0338118 (49:2884)
  • [11] G. Choquet, Convergences, Ann. Univ. Grenoble Sect. Sci. Math. Phys. 23 (1948), 57-112. MR 10, 53. MR 0025716 (10:53d)
  • [12] C. H. Cook and H. R. Fischer, On equicontinuity and continuous convergence, Math. Ann. 159 (1965), 94-104. MR 31 #3995. MR 0179752 (31:3995)
  • [13] B. Day, A reflection theorem for closed categories, J. Pure Appl. Algebra 2 (1972), 1-11. MR 45 #5187. MR 0296126 (45:5187)
  • [14] H. R. Fischer, Limesräume, Math. Ann. 137 (1959), 269-303. MR 22 #225. MR 0109339 (22:225)
  • [15] H. Herrlich and G. E. Strecker, Category theory, Allyn and Bacon, Boston, Mass., 1973. MR 50 #2284. MR 0349791 (50:2284)
  • [16] H. Herrlich, Topological functors, Gen. Topology and Appl. 4 (1974), 125-142. MR 49 #7970. MR 0343226 (49:7970)
  • [17] -, Cartesian closed topological categories, Math. Coll. Univ. Cape Town 9 (1974), 1-16. MR 0460414 (57:408)
  • [18] -, Some topological theorems which fail to be true, Proc. Internat. Conf. Categorical Topology (Mannheim 1975), Lecture Notes in Math, vol. 540, Springer-Verlag, Berlin and New York, 1976, pp. 265-285. MR 0436073 (55:9024)
  • [19] -, Initial completions, Math. Z. 150 (1976), 101-110. MR 0437614 (55:10538)
  • [20] M. Katětov, On continuity structures and spaces of mappings, Comment. Math. Univ. Carolinae 6 (1965), 257-278. MR 33 #1826. MR 0193608 (33:1826)
  • [21] D. C. Kent, Convergence functions and their related topologies, Fund. Math. 54 (1964), 125-133. MR 28 #4509. MR 0161301 (28:4509)
  • [22] D. C. Kent, K. McKennon, G. Richardson and M. Schroder, Continuous convergence in $ C(X)$, Pacific J. Math. 52 (1974), 457-465. MR 0370482 (51:6709)
  • [25] H. J. Kowalsky, Limesräume und Komplettierung, Math. Nachr. 12 (1954), 301-340. MR 17, 390. MR 0073147 (17:390b)
  • [24] A. Machado, Espaces d'Antoine et pseudo-topologies, Cahiers Topologie Géom. Différentielle 14 (1973), 309-327. MR 0345054 (49:9793)
  • [25] D. Marxen, Quotients of quasi-uniform spaces (preprint).
  • [26] H. Müller, Über die Vertauschbarkeit von Reflexionen und Coreflexionen Quasi-Top Kategorien über Meng (preprint).
  • [27] L. D. Nel, Initially structured categories and cartesian closedness, Canad. J. Math. 27 (1975), 1361-1377. MR 0393183 (52:13993)
  • [28] -, Cartesian closed topological categories, Proc. Internat. Conf. Categorical Topology (Mannheim 1975), Lecture Notes in Math., vol. 540, Springer-Verlag, Berlin and New York, 1976, pp. 439-451. MR 0447369 (56:5682)
  • [29] H. Poppe, Compactness in general function spaces, V.E.B. Deutscher Verlag Wiss., Berlin, 1974. MR 0438281 (55:11199)
  • [30] M. Schroder, Solid convergence spaces, Bull. Austral. Math. Soc. 8 (1973), 443-459. MR 47 #9528. MR 0320995 (47:9528)
  • [31] E. Spanier, Quasi-topologies, Duke Math. J. 30 (1963), 1-14. MR 26 #1847. MR 0144300 (26:1847)
  • [32] O. Wyler, Convenient categories for topology, General Topology and Appl. 3 (1973), 225-242. MR 48 #2972. MR 0324622 (48:2972)
  • [33] -, Are there topoi in topology? Proc. Internat. Conf. Categorical Topology (Mannheim 1975), Lecture Notes in Math., vol. 540, Springer-Verlag, Berlin and New York, 1976, pp. 699-719. MR 0458346 (56:16549)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 18D15

Retrieve articles in all journals with MSC: 18D15


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1977-0476831-6
PII: S 0002-9939(1977)0476831-6
Keywords: Cartesian closed topological hull, dense functorial embedding, initial source preserving, power preserving, concrete category
Article copyright: © Copyright 1977 American Mathematical Society