SIMPLE GOING DOWN IN PI RINGS

PHILLIP LESTMANN

Abstract. In this paper we prove two generalizations of a theorem which McAdam proved for commutative rings. Theorem 1 states that if \(R \subseteq S \) is a central integral extension of PI rings, then going down for prime ideals holds between \(R \) and \(S \) if and only if going down holds in \(R \subseteq R[s] \) for each \(s \in S \). Theorem 2 gives the analogous result for going down in \(C \subseteq R \) where \(C \) is a central subring of the PI ring \(R \). As a corollary we obtain a result of Schelter generalizing Krull's theorem on going down for integral extensions of integrally-closed subrings.

If \(R \) is a ring satisfying a polynomial identity, we shall say that \(R \) is a PI ring. A pair of rings \(R \subseteq S \) is said to have going down (GD) if for every pair of prime ideals \(P \subseteq Q \) of \(R \) and every prime ideal \(Q \) of \(S \) with \(Q \cap R = P \), there exists a prime ideal \(Q_1 \) of \(S \) so that \(Q_1 \subseteq Q \) and \(Q_1 \cap R = P \). The pair \(R \subseteq S \) is said to have simple going down (SGD) if \(R \subseteq R[t] \) has GD for each \(t \in S \).

If \(R \subseteq S \) is a pair of rings, \(S \) is said to be integral over \(R \) if each element \(s \) of \(S \) satisfies an equation of the form \(s^n + r_1 s^{n-1} + \cdots + r_{n-1} s + r_n = 0 \) where \(r_i \in R \), \(1 \leq i \leq n \). McAdam has shown [1] the following: If \(R \subseteq T \) is a pair of commutative rings and \(T \) is integral over \(R \), then \(R \subseteq T \) has GD if and only if \(R \subseteq T \) has SGD. To extend this idea we first need another definition.

Definition. For any rings \(R \subseteq S \) let \(SR = \{ s \in S \mid sr = rs \text{ for each } r \in R \} \). We say that \(R \subseteq S \) is an extension if \(S = RSR \). The extension is said to be central if \(S = RZ(S) \) where \(Z(S) \) is the center of \(S \).

In this paper we generalize McAdam's result in Theorems 1 and 2 as follows:

Theorem 1. Let \(R \subseteq S \) be a central integral extension of PI rings. Then \(R \subseteq S \) has GD if and only if \(R \subseteq S \) has SGD.
Theorem 2. Let R be a PI ring integral over the central subring C. Then $C \subseteq R$ has GD if and only if $C \subseteq R$ has SGD.

As a corollary to Theorem 2 we get the generalization of Krull's going down theorem for integral extensions of integrally-closed subrings which was proved by Schelter [4].

We begin with the following definition by way of reminder.

Definition. Let $R \subseteq S$ be a pair of rings.

1. If for each prime P of R there exists a prime Q of S so that $Q \cap R = P$, then $R \subseteq S$ is said to have lying over (LO).

2. If for any pair of primes $P \subseteq R$ of R and prime Q of S with $Q \cap R = P$ there is a prime Q_1 of S with $Q \subseteq Q_1$ and $Q_1 \cap R = R$, then $R \subseteq S$ is said to have going up (GU).

3. If P any prime of R and Q_1 and Q_2 primes of S with $Q_1 \cap R = Q_2 \cap R = P$ implies that $Q_1 \subseteq Q_2$ and $Q_2 \subseteq Q_1$, then $R \subseteq S$ is said to have incomparability (INC).

Lemma 1. Let R be any ring and let B be a commutative subring of R. Assume R is integral over B. If P is any prime ideal of B and $z \in P$, then $zR \cap B \subseteq P$.

Proof. Take $z \in P$ and suppose $zr \in B$ for some $r \in R$. R is integral over B; so we have an equation $r^n + b_1 r^{n-1} + \cdots + b_n = 0$ for some $b_i \in B$, $1 \leq i \leq n$. Since $zr \in B$ and B is commutative, $zr = z^2r$. Hence, we may write

$$0 = z^n(r^n + b_1 r^{n-1} + \cdots + b_n) = (zr)^n + b_1 z(zr)^{n-1} + \cdots + b_n z^n.$$

Thus $(zr)^n \in P$, and so $zr \in P$ since P is a prime ideal of the commutative ring B.

The following lemma is Theorem 1 of [3]:

Lemma 2. If $R \subseteq S$ is an integral extension and R satisfies a polynomial identity, then $R \subseteq S$ has GU, INC, and LO.

The next lemma is not new, but it is added here for completeness.

Lemma 3. If R is any ring and P is a minimal prime ideal of R, then $P \cap Z(R)$ consists of zero-divisors of R.

Proof. Let $A_0 = \{ r \in R | r$ is regular in R (i.e., r has no nontrivial right or left annihilator in R)$\}$, and set $A = A_0 \cap Z(R)$. If $A_0 \cap Z(R) = \emptyset$, we are done trivially. Let $B = R - P$. Write $AB = \{ ab | a \in A, b \in B \}$. Note that $0 \notin AB$ since $0 \notin B$ and A consists of regular elements. Let Q be an ideal of R maximal with respect to the property $Q \cap AB = \emptyset$. Claim. Q is a prime

3 Schelter has issued a correction to his paper which generalizes the definition of integral. He defines an element s of an extension of a ring R to be integral over R if s satisfies a monic polynomial in $R \subseteq C[x]$, the free product of R and $C[x]$, where C is the center of R. With a slight change in our proof of Lemma 1, the results of this paper hold for this more general (and useful) definition of integral.
ideal of \(R \). If not, there exist ideals \(I, J \) of \(R \) with \(Q \subseteq I, Q \subseteq J \), and \(IJ \subseteq Q \). By maximality of \(Q \) we may take \(x \in I \cap AB \) and \(y \in J \cap AB \). We have \(x, y \in R - Q \) and \(xRy \subseteq Q \). Since \(x, y \in AB \), we may set \(x = a_1b_1 \) and \(y = a_2b_2 \), where \(a_1, a_2 \in A, b_1, b_2 \in B \). Since \(b_1, b_2 \notin P \), there is an \(r \in R \) so that \(b_1rb_2 \notin P \). But \(xry = a_1b_1a_2b_2 = (a_1a_2)(b_1rb_2) \in AB \cap Q \). Contradiction. So \(Q \) is a prime ideal of \(R \).

Suppose \(Q \not\subseteq P \). Take \(b \in Q - P \) and any \(a \in A \). This gives \(ab \in Q \cap AB \). So we must have \(Q \subseteq P \). This implies that \(Q = P \) since \(P \) is a minimal prime. Now suppose \(Q \cap A \neq \emptyset \) and take \(a \in Q \cap A \). If \(b \in B \) we again have the contradiction \(ab \in Q \cap AB \). Therefore \(\emptyset = Q \cap A = P \cap A \), and we are done.

The next lemma was proved by McAdam for \(R \subseteq S \) both commutative in [1].

Lemma 4. Let \(R \subseteq S \) be any extension of \(\pi \)-rings, and let \(P \subseteq P_1 \) be prime ideals of \(R \). Suppose \(Q_1 \) is a prime of \(S \) with the property that \(Q_1 \cap R = R_1 \). Set \(\Gamma = \left\{ Q_a \mid Q_a \text{ is a prime ideal of } S, Q_a \cap R = P \right\} \), and define \(I = \bigcap \{ Q_a \mid Q_a \in \Gamma \} \). We assume \(\Gamma \neq \emptyset \). Then there is a prime \(Q \) of \(S \) with \(Q \subseteq Q_1 \) and \(Q \cap R = P \) if and only if \(I \subseteq Q_1 \).

Proof. (\(\Rightarrow \)) Obvious.

(\(\Leftarrow \)) Suppose \(I \subseteq Q_1 \). Then \(P \subseteq I \subseteq Q_1 \). Let \(Q \) be a prime ideal of \(S \) in \(Q_1 \) minimal over \(P \). If \(Q \cap R \neq P \), then \(\overline{Q} \cap \overline{R} \neq \emptyset \) in \(\overline{S} = S/I \). Now \(\overline{R} \subseteq \overline{S} \) is still an extension of \(\pi \)-rings. Since \(I \cap R = P, \overline{R} \) is a prime \(\pi \)-ring. So there is a \(\bar{q} \in Z(\overline{S}) \cap \overline{Q} \) with \(\bar{q} \neq \emptyset \) [5]. Since \(Z(\overline{R}) \subseteq Z(\overline{S}) \) and \(\overline{Q} \cap Z(\overline{S}) \) consists of zero-divisors by Lemma 3, we can find a \(i \neq 0 \) in \(\overline{S} \) so that \(\bar{q}i = \emptyset \). However, \(i \neq 0 \) gives a \(\overline{Q}_a \) for which \(i \notin \overline{Q}_a \). This forces \(\bar{q} \in \overline{Q}_a \). If not, \(\overline{S}/\overline{Q}_a \) is a prime \(\pi \)-ring with a nonzero central element which is a zero-divisor. Thus \(\bar{q} \) is in \(\overline{Q}_a \cap \overline{R} = \emptyset \) since \(Q_a \cap R = P \subseteq I \). This contradiction shows that \(\overline{Q} \cap \overline{R} = \emptyset \); i.e., \(Q \cap R = I \cap R = P \).

We now proceed to prove Theorems 1 and 2.

Theorem 1. Let \(R \subseteq S \) be a central integral extension of \(\pi \)-rings. Then \(R \subseteq S \) has GD if and only if \(R \subseteq S \) has SGD.

Proof. (\(\Rightarrow \)) Suppose \(R \subseteq S \) has GD, and let \(t \) be any element of \(S \). Let \(P \subseteq P_1 \) be two primes of \(R \) and \(Q_1 \) a prime of \(R[t] \) such that \(Q_1 \cap R = R_1 \). Since \(R[t] \subseteq S \) is a central integral extension, there is a prime \(Q'_1 \) of \(S \) with \(Q'_1 \cap R[t] = Q_1 \) by Lemma 2. Note that \(Q'_1 \cap R = P \); so there is a prime \(Q' \) of \(S \) satisfying \(Q' \subseteq Q'_1 \) and \(Q' \cap R = P \) by GD in \(R \subseteq S \). Let \(Q = Q' \cap R[t] \). Again, \(R[t] \subseteq S \) being a central extension gives that \(Q \) is a prime ideal of \(R[t] \). Furthermore, \(Q \subseteq Q_1 \) and \(Q \cap R = P \). Thus \(R \subseteq R[t] \) has GD for every \(t \in S \).

(\(\Leftarrow \)) Assume that \(R \subseteq S \) has SGD. Suppose there are two primes \(P \subseteq P_1 \) of \(R \) and a prime \(Q'_1 \) of \(S \) so that \(Q'_1 \cap R = P_1 \). Define \(I \) as in Lemma 4 using \(W = \{ Q_a \mid Q_a \text{ is a prime ideal of } S, Q_a \cap R = P \} \). Note that \(R \subseteq S \) has LO
by Lemma 2; hence, \(W \neq \emptyset \). By Lemma 4 we will be done if we can show that \(I \subseteq Q' \). If this is not true, pick \(t \in I - Q' \) and consider \(R[t] \). Let \(Q'_1 = Q' \cap R[t] \) which is prime in \(R[t] \) as above. By GD in \(R[t] \) there is a prime ideal \(Q \) of \(R[t] \) such that \(Q \subseteq Q'_1 \) and \(Q \cap R = P \). As before \(R[t] \subseteq S \) has LO; so there exists a prime \(Q' \) of \(S \) with \(Q' \cap R[t] = Q \). But then \(Q' \cap R = P \) gives \(I \subseteq Q' \) which says \(t \in Q' \cap R[t] = Q \subseteq Q'_1 = Q'_1 \cap R[t] \). This contradicts our choice of \(t \). Therefore, \(I \subseteq Q'_1 \) as required.

Theorem 2. Let \(R \) be a PI ring integral over a central subring \(C \). Then \(C \subseteq R \) has GD if and only if \(C \subseteq R \) has SGD.

Proof. (\(\Rightarrow \)) Suppose \(C \subseteq R \) has GD, and let \(t \) be any element of \(R \). Set \(B = C[t] \). Let \(P \subseteq R \) be two primes of \(C \) such that there is a prime \(Q_1 \) of \(B \) lying over \(P \) (i.e., \(P = Q_1 \cap C \)). Take \(q_1 \) to be an ideal of \(R \) maximal with respect to \(q_1 \cap B \subseteq Q_1 \). It is easy to see that \(q_1 \) is a prime ideal of \(R \). It is also true that \(q_1 \cap C = R \). For \(q_1 \cap C \subseteq (q_1 \cap B) \cap C \subseteq Q_1 \cap C = R \). If \(q_1 \cap C \subseteq P \), there is a \(z \in P - q_1 \cap C \). Consider \(R = R/q_1 \). Applying Lemma 1 to the rings \(B \subseteq R \), we find that \(zR \cap B \subseteq Q_1 \) which translates to \((zR + q_1) \cap (B + q_1) \subseteq Q_1 + q_1 \) in \(R \). Taking the intersection of both sides with \(B \), we get \((zR + q_1) \cap B \subseteq (Q_1 + q_1) \cap B = Q_1 \). But the ideal \((z, q_1) \) is properly larger than \(q_1 \), contradicting the maximality of \(q_1 \). Thus \(q_1 \cap C = R \).

By hypothesis there is a prime ideal \(q \) of \(R \) such that \(q \subseteq q_1 \) and \(q \cap C = P \). Let \(S = C - P \) and \(T = B - Q_1 \). \(P \) and \(Q_1 \) are prime ideals of \(C \) and \(B \), respectively. Hence, \(ST = \{st \mid s \in S, t \in T \} \) is a multiplicatively closed subset of \(B \). Note that \(ST \cap (q \cap B) = \emptyset \) because elements of \(S \) are regular mod \(q \) in \(R \), hence in \(B \), and \(q \cap q_1 \) gives \(q \cap B \subseteq q_1 \cap B \subseteq Q_1 \) so that \((q \cap B) \cap T = \emptyset \). Let \(Q \) be an ideal of \(B \) containing \(q \cap B \) and maximal with respect to \(Q \cap ST = \emptyset \). We note three things about \(Q \):

1. \(Q \) is a prime ideal of \(B \).
2. \(Q \cap C = P \). For \(Q \subseteq q \cap B \) implies \(Q \cap C \supseteq (q \cap B) \cap C = P \). If \(Q \cap C \supseteq P \), take any \(s \in (Q \cap C) - P \) and any \(t \in T \). Then \(s \in S \) and \(st \in Q \cap ST \). Contradiction.
3. \(Q \subseteq Q_1 \). If not, take \(t \in Q - Q_1 \) and any \(s \in S \). Then \(t \in T \) and \(st \in Q \cap ST \). Contradiction.

Therefore \(C \subseteq B = C[t] \) has GD.

(\(\Leftarrow \)) Suppose \(C \subseteq R \) has SGD. Let \(P \subseteq R \) be two primes of \(C \) and \(q_1 \) a prime of \(R \) lying over \(P \) in \(C \). Let \(W = \{q_\alpha \mid q_\alpha \text{ is prime in } R \text{ and } q_\alpha \cap C = P \} \). \(W \neq \emptyset \) since \(C \subseteq R \) has LO by Lemma 2. Set \(I = \cap \{q_\alpha \mid W \} \). By Lemma 4 it will be enough to show that \(I \subseteq q_1 \). If not, choose \(t \in I \) so that \(t \) is regular mod \(q_1 \) \([2, p. 48]\). Let \(B = C[t] \), and let \(Q_1 \) be a prime ideal of \(B \) with \(Q_1 \supseteq q_1 \cap B \) and \(Q_1 \cap C = P \). (Just enlarge \(q_1 \cap B \), if necessary, to an ideal of \(B \) maximal with respect to lying over \(P \).) Apply the SGD hypothesis to find a prime ideal \(Q \) of \(B \) so that \(Q \subseteq Q_1 \) and \(Q \cap C = P \). If we now take \(q \) to be an ideal of \(R \) maximal with respect to \(q \cap B \subseteq Q \), the same argument of the first part of this proof shows that \(q \) is prime in \(R \) and \(q \cap C = P \). So
q = q_a \in W; \text{ whence } I \subseteq q, \text{ and } t \subseteq q. \text{ Thus } t \subseteq q \cap B \subseteq Q \subseteq Q_1 \text{ implies } t \subseteq Q_1. \text{ Now } Q_1 \text{ is a prime minimal over the ideal } q_1 \cap B \text{ in } B. \text{ Otherwise, there is a prime } Q_0 \text{ of } B \text{ such that } q_1 \cap B \subseteq Q_0 \subseteq Q_1. \text{ This would give } P_i = (q_1 \cap B) \cap C \subseteq Q_0 \cap C \subseteq Q_1 \cap C = P_i, \text{ contradicting INC in } C \subseteq B. \text{ But } Q_1 \text{ minimal over } q_1 \cap B \text{ implies that } Q_1 \text{ consists of elements which are zero-divisors mod } q_1 \cap B \text{ by Lemma 3. So there exists } x \in B - q_1 \cap B \text{ so that } xt \in q_1 \cap B. \text{ This contradicts the fact that } t \text{ is regular mod } q_1 \text{ in } R. \text{ Therefore } I \subseteq q_1, \text{ and } C \subseteq R \text{ has GD.}

Corollary (Schelter). If \(R \) is a prime PI ring integral over an integrally-closed central subring \(A \), then \(A \subseteq R \) has GD.

Proof. By Theorem 2, \(A \subseteq R \) has GD if and only if \(A \subseteq R \) has SGD. If \(t \in R \), then \(A[t] \) is a commutative subring of \(R \) with no zero-divisors in \(A \). The commutative going down theorem (see e.g. [6]) may be applied to see that \(A \subseteq A[t] \) has GD.

References

1. Stephen McAdam, Private communication.