Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)


A generalization of a theorem of S. N. Bernstein

Author: J. D. Chandler
Journal: Proc. Amer. Math. Soc. 63 (1977), 95-100
MSC: Primary 41A20
MathSciNet review: 0433086
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A rational approximation scheme is exhibited for a set $ \Delta $ which consists of a finite union of compact subintervals of the real line. This rational approximation scheme provides a characterization of the analytic functions on $ \Delta $ which generalizes S. N. Bernstein's characterization of the analytic functions on $ [ - 1,1]$.

References [Enhancements On Off] (What's this?)

  • [1] S. N. Bernstein, Leçons sur les propriétés extrémales et la meilleure approximation des fonctions analytiques d'une variable réelle, Gauthiers-Villars, Paris, 1926.
  • [2] G. Pólya and G. Szegő, Problems and theorems in analysis. Vol. II, Revised and enlarged translation by C. E. Billigheimer of the fourth German edition, Springer-Verlag, New York-Heidelberg, 1976. Theory of functions, zeros, polynomials, determinants, number theory, geometry; Die Grundlehren der Mathematischen Wissenschaften, Band 216. MR 0396134 (53 #2)
  • [3] Marvin Rosenblum and James Rovnyak, Cayley inner functions and best approximation, J. Approximation Theory 17 (1976), no. 3, 241–253. MR 0613986 (58 #29632)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 41A20

Retrieve articles in all journals with MSC: 41A20

Additional Information

PII: S 0002-9939(1977)0433086-6
Keywords: Cayley inner function
Article copyright: © Copyright 1977 American Mathematical Society