A NOTE ON PSEUDOCOMPACT SPACES AND k_R-SPACES

AKIO KATO

Abstract. Utilizing the Stone-Cech compactification of an uncountable discrete space, we construct a pseudocompact space X which belongs to Frolik's class \mathbb{P}^* but $k_R X$ is not pseudocompact.

All spaces in this paper will be completely regular Hausdorff. Recall that a space X is called a k_R-space provided each real-valued function on X is continuous if its restriction to every compact subset of X is continuous, and that associated with each space X there is a unique k_R-space $k_R X$ having the same underlying set and the same compact sets as X.

Let \mathcal{R} be the class of spaces X such that $k_R X$ is pseudocompact. Let \mathbb{P}^* be the class of pseudocompact spaces X with the property: Each infinite collection of disjoint open sets has an infinite subcollection, each of which meets some fixed compact set \mathbb{Q}.

N. Noble [3] showed that $\mathcal{R} \subset \mathbb{P}^*$ and that \mathbb{P}^* is closed under arbitrary products. In [4] he proved \mathcal{R} is also closed under arbitrary products. It was not known, however, whether the two classes coincide or not. The purpose of this note is to show that they differ, i.e., \mathcal{R} is properly contained in \mathbb{P}^*.

For a space X, βX and X^* denote the Stone-Cech compactification of X and its remainder, respectively. For D the discrete set of power \aleph_1, let Ω be the subspace of $D^* = \beta D \setminus D$ consisting of all the elements in the closure (in βD) of some countable subset of D. Let A be a countably infinite, discrete subset of $D^* \setminus \Omega$. Put $X = \Omega \cup A \subset D^*$. Henceforth X denotes this subspace of D^*. We will show that $X \in \mathbb{P}^* \setminus \mathcal{R}$.

Assertion 1. X belongs to \mathbb{P}^*.

Proof. Since every countable subset of Ω has compact closure in Ω, Ω belongs to \mathbb{P}^*. Since Ω is dense in X, X also belongs to \mathbb{P}^*.

The next property of D^* is the key to prove that X is not in \mathcal{R}.

Lemma 1. Let F be a noncompact closed subset of Ω. Then $\text{cl}_{D^*} F \setminus \Omega$ is infinite. In fact, its cardinal is at least $\exp \exp \aleph_1$.

Proof. Let F be a noncompact closed set in Ω. Put $uD = D^* \setminus \Omega$. It is well known that the cardinal of uD is $\exp \exp \aleph_1$ (cf. [5, Theorem 5.13]). Hence,
we need only show that $\text{cl}_D F \setminus \Omega$ contains a copy of uD.

Let $x_0 \in F$. Then $x_0 \in \text{cl}_D N_0$ for some countable set N_0 in D. Let us denote by ω_1 the first uncountable ordinal. Suppose $\alpha < \omega_1$ and that we have chosen a subset $\{x_\gamma\}_{\gamma < \alpha}$ of F and a family $\{N_\gamma\}_{\gamma < \alpha}$ of disjoint countable subsets of D with $x_\gamma \in \text{cl}_D N_\gamma$. Since $\bigcup_{\gamma < \alpha} N_\gamma$ is countable, its closure in βD is a compact set contained in Ω; hence $F \setminus \text{cl}_D \bigcup_{\gamma < \alpha} N_\gamma$ is nonempty because F is not compact. Pick a point x from the nonempty set. Since every point of Ω has a neighborhood (in βD) which is a closure of some countable subset of D, there exists a countable set N in D with $x \in \text{cl}_D N$. Put $x_\alpha = x$ and $N_\alpha = N$.

Thus, by induction, we get a subset $\{x_\alpha\}_{\alpha < \omega_1}$ of F and a family $\{N_\alpha\}_{\alpha < \omega_1}$ of disjoint countable subsets of D such that $x_\alpha \in \text{cl}_D N_\alpha$. Put $F_1 = \{x_\alpha\}_{\alpha < \omega_1}$. Clearly F_1 is a copy of D. We will show next that F_1 is C^*-embedded in βD.

Let f be a bounded real-valued function on F_1. Define a function f_D on D by $f_D(N_\alpha) = f(x_\alpha)$ and $f_D(D \setminus \bigcup_{\alpha < \omega_1} N_\alpha) = 0$. Then the Stone extension of f_D over βD is an extension of f. Hence F_1 is C^*-embedded in βD and this implies $\beta F_1 = \text{cl}_D F_1 \subset \text{cl}_D F_0$. Thus we have $\beta F_1 \setminus \Omega \subset \text{cl}_D F \setminus \Omega$. Now it is easy to see that $\beta F_1 \setminus \Omega$ is a copy of uD. This completes the proof.

Lemma 2. Every compact subset K of $X = \Omega \cup A$ is a topological sum $K = K_1 \oplus K_2$ of a compact set K_1 in Ω and a finite set K_2 in A.

Proof. Let K be a compact set in X. Put $K_1 = K \cap \Omega$ and $K_2 = K \cap A$. Note that A is a closed subset of X because Ω is locally compact. Therefore K_2 is a compact set in the discrete space A, i.e., K_2 is finite. Since K is compact, $\text{cl}_D K_1 \setminus \Omega$ is contained in the finite set K_2. Hence, by Lemma 1, K_1 is compact.

Assertion 2. X does not belong to \mathfrak{X}, i.e., kRX is not pseudocompact.

Proof. Let $a \in A$ and let f_a be a real-valued function on X such that $f_a(a) = 1$ and $f_a(x) = 0$ for any $x \neq a$. Then, by Lemma 2, f_a is continuous on every compact subset of X. This implies that each point of A is isolated in kRX. Since Ω is locally compact, we have $kRX = \Omega \oplus A$. Now it is clear that kRX is not pseudocompact.

References