ON CONTINUITY OF FIXED POINTS OF COLLECTIVELY CONDENSING MAPS

MARTIN FAN CHENG

ABSTRACT. In this paper, we prove, in two parts, the following claim. Let X be a Banach space and Λ an arbitrary topological space. Suppose that $T: \Lambda \times X \to X$ is collectively condensing; then the fixed point set $S(\lambda, y)$ has closed graph if and only if T is continuous in both λ and y.

Zvi Artstein [1] proved

Theorem 0. Suppose X is a Banach space and Λ a metric space. Let $T: \Lambda \times X \to X$ be collectively condensing, i.e., for every $B \subset X$,

$$\chi\left(\bigcup_{\lambda \in \Lambda} T(\lambda, B)\right) \leq \chi(B),$$

where equality implies $\chi(B) = 0$ and χ is the Kuratowski measure of noncompactness, defined as $\chi(B) = \inf\{d | B \text{ can be covered by a finite number of subsets of diameter } < d\}$. Let $S(\lambda, y) = \{x \in X | x = T(\lambda, x) + y\}$. Then, $S(\lambda, y)$ is upper-semicontinuous if and only if $T(\lambda, x)$ is continuous in λ and x simultaneously.

At the end of his paper, he posed an open question. Is Theorem 0 still true if Λ is a general topological space? Upon investigation we find that $S(\lambda, y)$ has closed graph if and only if $T(\lambda, x)$ is continuous in both λ and x.

The following definitions are intended to refresh the memory of the readers.

Definition 0.1. Let F, Λ be topological spaces, and A a subset of a topological space E_2. We say a multifunction $F: A \to F, \Lambda$ is upper-semicontinuous at $A_0 \in A$ if for each open set G in E_2 containing $F(A_0)$, there exists an open neighborhood $U(A_0)$ of A_0 in E_2 such that $F(U(A_0) \cap A) \subset G$.

Definition 0.2. F is upper-semicontinuous on A if it is upper-semicontinuous at each $A_0 \in A$.

To prove our main theorem, we need the following tools.

Theorem 0.3 [2, Theorem 11.5]. A net has y as a cluster point iff it has a subnet which converges to y.

Theorem 0.4 [2, Theorem 11.8]. Let $f: X \to Y$. Then f is continuous at $x_0 \in X$ iff whenever $x_\lambda \to x_0$ in X, then $f(x_\lambda) \to f(x_0)$ in Y.

Received by the editors March 22, 1976.

Key words and phrases. Collective condensing, closed graph, upper-semicontinuity.

© American Mathematical Society 1977

74
Theorem 0.5 [2, Theorem 11Dc]. If every subnet of a net \((x_\lambda)\) has a subnet converging to \(x\), then \((x_\lambda)\) converges to \(x\).

The following are our main theorems.

Theorem 1. Let \(X\) be a Banach space, and \(\Lambda\) a topological space. Let \(T: \Lambda \times X \to X\) be collectively condensing. Suppose that \(S\) is upper-semicontinuous; then \(T\) is continuous in \(\Lambda\) and \(x\).

Proof. We will denote \(T(\lambda, \cdot)\) by \(T_\lambda\). Let \((\lambda_\alpha, x_\alpha)\) be a net in \(\Lambda \times X\) converging to \((\lambda_0, x_0)\). We will show that there exists a subnet \((T_{\lambda_\alpha}, x_{\lambda_\alpha})\) converging to \((T_{\lambda_0}, x_0)\). Let \(r_n = 1/2^n, n = 1, 2, \ldots\). Let \(S_0 = \{x_\alpha \mid \|x_\alpha - x_0\| \leq r\}\). We claim \(S_0\) is a subnet of \((x_\alpha)\). Indeed, a routine argument shows that the set \(A_0 = \{\alpha \mid x_\alpha \in S_0\}\) is a directed set, cofinal with the given directed set. Consequently, \(\{(\lambda_\alpha, x_\alpha) \mid \alpha \in A_0\}\) is a subnet, whereas \(S_0\) is a subnet of \((x_\alpha)\) and \((T_{\lambda_0}, x_0)\), respectively.

Let \(x_\alpha, x_\beta \in S_0\). Then \(\|x_\alpha - x_\beta\| \leq \|x_\alpha - x_0\| + \|x_\beta - x_0\| \leq 2r_1\). Hence, \(\text{diam}(S_0) \leq 2r_1\). By collective condensingness, \(\chi((T_{\lambda_\alpha}(x_\alpha) \mid \alpha \in A_0))\) \(\leq \chi(S_0) \leq 2r_1\). Let \(d_1 = \chi((T_{\lambda_\alpha}(x_\alpha) \mid \alpha \in A_0))\). Choose \(\varepsilon_1 > 0\) so that \(d_1 + \varepsilon_1 < 2r_1\). Then, there exists a finite cover: \(S_1, S_2, \ldots, S_k\) of \(S_0 = \{T_{\lambda_\alpha}(x_\alpha) \mid \alpha \in A_0\}\). We claim that there is a set \(S_1, 1 \leq j \leq k(1)\), which contains a subnet of \(S_0\). The following is the proof of this claim. Let \(S = \bigcup_{i=2}^{k(1)} S_i, A_S = \{\alpha \in A_1 \mid T_{\lambda_\alpha}(x_\alpha) \in S\}\), and \(A_{S_j} = \{\alpha \in A_1 \mid T_{\lambda_\alpha}(x_\alpha) \in S_j\}\). Then \(S_1, S\) is a cover of \(S_0\), and \(A_{S_j} \cup A_S = A_1\). Suppose that \(S_1\) does not contain a subnet of \(S_0\). Then there exists \(\alpha \in A_1\) such that \(d \not\geq \alpha\) implies that \(d \not\in A_{S_j}\). Let \(D = \{d \in A_1 \mid d \geq \alpha\}\) for some \(\alpha \in A_1\), and if \(d \not\geq d, d \not\in D\).

We will show that \(D\) is a directed set cofinal with \(A_1\). Clearly, \(D \subseteq A_S\). We need only show that if \(\alpha \in A\), then there exists a \(d \in D\) such that \(d \geq \alpha\).

Since \(A_1\) is a directed set, it follows that there exists a \(\alpha \in A_1\) such that \(d \geq \alpha\).

Let \(D = \{d \in A_1 \mid d \geq \alpha\}\). Clearly, \(D\) is a directed set cofinal with \(A_1\). Since \(S_1\) does not contain a subnet of \(S_0\), we can find \(d^* \in A_1, d^* \not\geq \alpha\) such that \(d \not\geq d^*\) implies \(d \not\in A_{S_j}\). Hence, \(d^* \in D\). Thus, \(D\) is a directed set cofinal with \(A_1\). This means that if \(S_1\) does not contain a subnet, then \(S\) must contain one. By repeating the argument a finite number of times we see that there exists \(S_j, 1 \leq j \leq k(1)\), which contains a subnet of \(S_0\). Let \(S_1 = S_j\). Let \(\mathfrak{K}_1\) denote the subnet contained in \(S_1\). Similarly, we can define \(\mathfrak{K}_2, \mathfrak{K}_3, \ldots\). Clearly, \(\mathfrak{K}_1 \supset \mathfrak{K}_2 \supset \cdots\), where \(\mathfrak{K}_n\) is of diameter \(2r_n = 2/2^n = 1/2^{n-1}, n = 1, 2, \ldots\). Thus \(\bigcap_{n=1}^{\infty} \mathfrak{K}_n = x\) for some \(x \in X\). Let \(B_{r_n}(x)\) be an open ball in \(X\) with center at \(x\) and radius \(r_n\). Then \(B_{r_n}(x)\) contains a subnet of \((T_{\lambda_\alpha}(x_\alpha))\). This can be seen as follows. Consider \(B_{r_{n+1}}(x_\alpha)\). By construction, there exists \(T_{\lambda_\alpha}(x_\alpha) \in \mathfrak{K}_{n+1}\) such that \(T_{\lambda_\alpha}(x_\alpha) \in B_{r_{n+1}}(x)\). Thus, for each \(T_{\lambda_\alpha}(x_\alpha) \in \mathfrak{K}_{n+1}\),

\[\text{diam}(\mathfrak{K}_{n+1}) \leq 2r_{n+1}\]

The proof of this claim is essentially due to Jack Porter.
\[
\|T_{x_\alpha}(x) - x\| \leq \|T_{x_\alpha}(x) - T_{x_{\alpha+2}}(x_{\alpha+2})\| + \|T_{x_{\alpha+2}}(x_{\alpha+2}) - x\| < 2r_{n+1} = r_n,
\]
i.e., \(R_{n+2} \subset B_{r_n}(x)\). This means, in other words, \(x\) is a cluster point of \(R_1\).

Hence, by Theorem 0.3, there is a subnet \(R\) of \(R_1\) which converges to \(x\). Let \(R = (T_{x_{\alpha}}(x))\). Then, clearly, \((\lambda_{\alpha}, x_{\alpha})\) \(\to\) \((\lambda_0, x_0)\). Let \(y = x_0 - x\), and for each \(\alpha\), let \(y_{\alpha} = x_{\alpha} - T_{x_{\alpha}}(x_{\alpha})\). Then, \((y_{\alpha}) \to y\), for some \(y \in X\). By hypothesis, \(x_0 \in S(\lambda_0, y)\), i.e., \(x_0 = T_{\lambda_0}(x_0) - y\). Thus, \(x = T_{\lambda_0}(x_0)\). Hence, \((T_{x_{\alpha}}(x_\alpha)) \to (T_{\lambda_0}(x_0))\). This actually shows that for each subnet of \((T_{x_{\alpha}}, x_\alpha)\), there is a subnet converging to \(T_{\lambda_0}(x_0)\) by Theorem 0.5, \((T_{\lambda_0}(x))\) \(\to\) \(T_{\lambda_0}(x_0)\). By Theorem 0.4, \(T\) is continuous in \((\lambda, x)\). This completes the proof of Theorem 1.

Remark 1. The above theorem is still true if \(S\) has closed graph instead. The proof is essentially the same.

Theorem 2. Let \(X\) be a Banach space, and \(\Lambda\) a topological space. Let \(T: \Lambda \times X \to X\) be continuous. For each \((\lambda, y) \in \Lambda \times X\), let \(S(\lambda, y) = \{x \in X | x = T(\lambda, x) + y\}\). Then \(S\) has closed graph.

Proof. Let \((\lambda_\alpha, y_\alpha)\) be a net converging to \((\lambda_0, y_0)\). For each \(\alpha\) let \(x_\alpha \in S(\lambda_\alpha, y_\alpha)\), i.e., \(x_\alpha = T(\lambda_\alpha, x_\alpha) + y_\alpha\). We will show that if \(\bar{x}\) is a cluster point of \((x_\alpha)\), then \(\bar{x} \in S(\lambda_0, y_0)\). Let \((\lambda_{\alpha})\) be a subnet of \((\lambda_\alpha)\) converging to \(\bar{x}\). Then, clearly, \((\lambda_{\alpha}) \to \lambda_0\), \((y_{\alpha}) \to y_0\). Hence, \((T(\lambda_{\alpha}, x_{\alpha})) = (x_{\alpha} - y_{\alpha}) \to \bar{x} - y_0\). By continuity, \((T(\lambda_{\alpha}, x_{\alpha})) \to T(\lambda_0, \bar{x})\). By Hausdorff property, \(T(\lambda_0, \bar{x}) = \bar{x} - y_0\), i.e., \(\bar{x} = T(\lambda_0, \bar{x}) + y_0\), or \(\bar{x} \in S(\lambda_0, y_0)\). Hence, \(S\) has closed graph.

Remark 2. Fred S. Van Vleck proved that if \(X\) is a Euclidean space, then the result of Theorem 0 is still valid no matter what space \(\Lambda\) is. However, if \(X\) is an arbitrary Banach space, our conjecture is that \(S\) need not be upper-continuous even though \(T\) is continuous and collectively condensing.

References

Department of Mathematics, University of Kansas, Lawrence, Kansas 66045