FUNCTIONAL EQUATIONS FOR POLYNOMIALS

KELLY MCKENNON AND BRUCE DEARDEN

Abstract. The set of all continuous symmetric multilinear forms of degree \(m \) on a real topological vector space \(V \) are shown to be in one-to-one correspondence with the family of continuous scalar-valued functions on \(V \) satisfying a certain functional equation. If \(V \) is \(n \)-dimensional, these functions are precisely those which can be represented by \(m \)-homogeneous polynomials of degree \(n \) (with respect to some basis of \(V \)).

The connection between this family of generalized polynomials and the \(m \)th derivatives of a scalar-valued function is discussed.

Denote by \(N \) the set of natural numbers and, for each \(n \in N \), by \(n \) the set \(\{ m \in N : m < n \} \). For all \(m, n \in N \), write \(n^m \uparrow \) for the family of increasing functions in \(n^m \).

Let \(A \) be an Abelian group and \(B \) a linear space over a field of characteristic 0. The binary operations in \(A \) and \(B \) will both be denoted + and, for each \(n \in N \) and \(x \in A \cup B \), \(nx \) will signify \(x + x + \cdots + x \) \((n \text{ times}) \). For each \(m \in N \), \(sm_m(A, B) \) will be the set of all symmetric functions \(\phi : A^m \to B \) such that, whenever \(k \in m \) and \(x, y, z \in A^m \) satisfy \(x_k + y_k = z_k \) and \(x_j = y_j = z_j \) for all \(j \neq k \), then \(\phi(x) + \phi(y) = \phi(z) \).

For each \(m \in N \), define \(F_m | B^A \times A^m \to B \) by letting

\[
F_m (f, x) = \sum_{k \in m} (-1)^{m-k} \sum_{\sigma \in n^m} f \left(\sum_{j \in k} x_{\sigma(j)} \right)
\]

for all \(f \in B^A \) and \(x \in A^m \). Define \(l_m(A, B) \) to be the set of all \(f \in B^A \) such that \(f(kx) = k^n f(x) \) and \(F_{m+1}(f, y) = 0 \) for all \(k \in n \), \(x \in A \), and \(y \in A^{m+1} \). Note that \(l_1(A, B) = \text{HOM}(A, B) = sm_1(A, B) \). We shall show that \(l_m(A, B) \) and \(sm_m(A, B) \) are isomorphic for larger \(m \) as well.

For \(m \in N \) and \(x \in A^{m+1} \), we shall write \(x', x'', \) and \(x''' \) for the elements of \(A^{m+1} \) satisfying \(x_j = x_j' = x_j'' = x_j''' \) for \(j \in m+1 \) and \(x_m = x_m', x_m'' = x_m''' = x_{m+1}' \), and \(x_m''' = x_m + x_{m+1} \).

Lemma. For all \(m \in N \), \(x \in A^{m+1} \), and \(f \in B^A \),

\[
F_{m+1} (f, x) = F_m (f, x''') - F_m (f, x'') - F_m (f, x').
\]

Proof. Define
\[\theta_1 \equiv \sum_{k \in m-1} (-1)^{m-k} \sum_{\sigma \in m^{-1}} f\left(\sum_{j \in k} x_{\sigma(j)} \right). \]

\[\theta_2 \equiv \sum_{k \in m-1} (-1)^{m-k} \sum_{\sigma \in m^{+}\uparrow \uparrow} f\left(\sum_{j \in k} x_{\sigma(j)} \right). \]

\[\theta_3 \equiv \sum_{k \in m-1} (-1)^{m-k} \sum_{\sigma \in m^{+} \uparrow} f\left(\sum_{j \in k} x_{\sigma(j)} \right), \]

\[\theta_4 \equiv \sum_{k \in m-1} (-1)^{m-k} \sum_{\sigma \in m^{-1}} f\left(\sum_{j \in k} x_{\sigma(j)} \right). \]

\[\theta_5 \equiv f\left(\sum_{j \in m} x_j \right), \quad \theta_6 \equiv f\left(\sum_{j \in m} x_j'' \right), \quad \text{and} \quad \theta_7 \equiv f\left(\sum_{j \in m} x_j \right). \]

The following equalities are evident:

\[-\theta_1 = \sum_{k=1}^{m-1} (-1)^{m+1-k} \sum_{\sigma \in m^{-1}} f\left(\sum_{j \in k} x_{\sigma(j)} \right), \]

\[\theta_2 = \sum_{k=2}^{m} (-1)^{m+1-k} \sum_{\sigma \in m^{+} \uparrow \uparrow} f\left(\sum_{j \in k} x_{\sigma(j)} \right), \]

\[\theta_3 = \sum_{k=1}^{m-1} (-1)^{m+1-k} \sum_{\sigma \in m^{+} \uparrow} f\left(\sum_{j \in k} x_{\sigma(j)} \right), \]

\[\theta_4 = \sum_{k=1}^{m-1} (-1)^{m+1-k} \sum_{\sigma \in m^{-1}} f\left(\sum_{j \in k} x_{\sigma(j)} \right), \]

\[\theta_5 = f\left(\sum_{j \in m+1} x_j \right), \quad \text{and} \]

\[-\theta_6 - \theta_7 = (-1)^{m+1-m} \sum_{\sigma \in m^{+} \uparrow} f\left(\sum_{j \in m} x_{\sigma(j)} \right). \]

From the definition of the \(\theta \)'s follows
\[F_m(f, x''') - F_m(f, x''') - F_m(f, x') = \left(\theta_1 + \theta_3 + \theta_5 \right) - \left(\theta_1 + \theta_3 + \theta_6 \right) - \left(\theta_1 + \theta_4 + \theta_7 \right) = -\theta_1 + \theta_2 - \theta_3 - \theta_4 + \theta_5 - \theta_6 - \theta_7. \]

But this last, by the equalities of the preceding paragraph, is just \(F_{m+1}(f, x) \).

Q.E.D.

Fix \(m \in \mathbb{N} \). Define \(\phi \colon l_m(A, B) \to B^{(A^m)} \) by

\[\phi_f(x) = \left(\frac{1}{m!} \right) F_m(f, x) \quad \text{for all } f \in l_m(A, B) \text{ and } x \in A^m. \]

Theorem 1. The map \(\phi \) is an isomorphism of \(l_m(A, B) \) onto \(sm_m(A, B) \).

Further, for any constant function \(x \in A^m \), \(f(x_i) = \phi(x) \).

Proof. Fix \(f \in l_m(A, B) \). That \(\phi_f \) is symmetric follows from the commutativity of \(A \). To choose arbitrarily two elements of \(A^m \), which agree in the first \(m - 1 \) coordinates, we arbitrarily select an element \(x \) of \(A^{m+1} \) and consider \(x' \) and \(x'' \). The preceding lemma implies

\[\phi_f(x') + \phi_f(x'') = \left(\frac{1}{m!} \right) \left[F_m(f, x') + F_m(f, x'') \right] = \left(\frac{1}{m!} \right) \left[F_m(f, x''') - F_{m+1}(f, x) \right] = \left(\frac{1}{m!} \right) F_m(f, x''') = \phi_f(x''). \]

This proves that \(\phi_f \) is a homomorphism in the last variable. Since it is symmetric, it is a homomorphism in each variable. Thus, \(\phi_f \in sm_m(V) \).

The formula

\[\sum_{k \in m} (-1)^{m-k} \binom{m}{k} k^m = m! \]

can be found, for instance, in [2]. For each constant \(x \in A^m \), since \(m^k \) has cardinality \(\binom{m}{k} \),

\[\phi_f(x) = \frac{1}{m!} F_m(f, x) = \frac{1}{m!} \sum_{k \in m} (-1)^{m-k} \sum_{\sigma \in m^k} f \left(\sum_{j \in k} x_{\sigma(j)} \right) \]

\[= \frac{1}{m!} \sum_{k \in m} (-1)^{m-k} \binom{m}{k} f(kx_1) \]

\[= f(x_1) \frac{1}{m!} \sum_{k \in m} (-1)^{m-k} \binom{m}{k} k^m = f(x_1). \]

This proves that \(\phi \) is injective. That it is a homomorphism is clear.

We now finish the proof by showing that \(\phi \) is surjective. Let \(\psi \) be in \(sm_m(A, B) \) and define \(g \in B^A \) by \(g(x_1) = \psi(x) \) for all constant \(x \in A^m \).

Claim. For all \(n \in \mathbb{N} \) and \(x \in A^n \),

\[F_n(g, x) = \sum_{\sigma \in n^m} \psi(x) \]

The claim is trivially true for \(n = 1 \). Suppose the claim is known to hold for all \(k \in n \), \(n \) an element of \(N \). Then, for each \(x \in A^{n+1} \),
\[F_n(g, x'') = \sum_{\sigma \in \Pi_m} \psi(x_{\sigma''}) \]

\[= \sum_{\sigma \in \Pi_m} \psi(x_\sigma') + \sum_{\sigma \in \Pi_m} \psi(x_\sigma'') + \sum_{\sigma \in \Pi_{m+1}^n} \psi(x_\sigma) \]

\[= F_n(g, x') + F_n(g, x'') + \sum_{\sigma \in \Pi_{m+1}^n} \psi(x_\sigma). \]

It now follows from the lemma that

\[F_{n+1}(g, x) = \sum_{\sigma \in \Pi_{n+1}^m} \psi(x_\sigma). \]

This proves the claim. Taking \(n \) to be \(m + 1 \), we have

\[F_{m+1}(g, x) = \sum_{\sigma \in \emptyset} \psi(x_\sigma) = 0, \]

\(\emptyset \) denoting the null set. That

\[g(kx) = \psi(kx, kx, \ldots, kx) = k^m \psi(x, x, \ldots, x) = k^m g(x) \]

for each \(x \in A \) and \(k \in \mathbb{N} \) is evident. It follows that \(g \in l_m(A, B) \). If we take \(n \) to be \(m \), the symmetry of \(\psi \) yields

\[F_m(g, x) = \sum_{\sigma \in \Pi_m^m} \psi(x_\sigma) = m! \psi(x) \]

for each \(x \in A^m \). It follows that \(\phi \) maps \(g \) onto \(\psi \). Q.E.D.

Now let \(V \) and \(L \) be topological real linear spaces. We shall write \(\text{csm}_m(V, L) \) and \(\text{cl}_m(V, L) \) for the subsets of \(\text{sm}_m(V, L) \) and \(\text{lm}_m(V, L) \) consisting of jointly continuous and continuous mappings, respectively. We shall denote the restriction of \(\phi \) to \(\text{cl}_m(V, L) \) by \(\phi \) as well.

Corollary 1. The map \(\phi \) is an isomorphism of \(\text{cl}_m(V, L) \) onto \(\text{csm}_m(V, L) \).

A standard argument using the fact that the rational numbers are dense in \(\mathbb{R} \) shows that \(\text{csm}_m(V, L) \) consists of precisely the continuous symmetric \(m \)-multilinear operators from \(V \) into \(L \).

Fix \(m \) and \(n \) in \(\mathbb{N} \) and write \(E \) for \(n \)-dimensional real linear space with its usual topology. We shall abbreviate \(\text{cl}_m(E, R) \) and \(\text{csm}_m(E, R) \) to \(l_m(E) \) and \(\text{sm}_m(E) \) respectively. Write \(\Omega \) for the set of all \(\sigma \in \{0, 1, \ldots, m\}^n \) such that \(\sum_{k \in \sigma} \sigma(k) = m \) and \(m^n \) for \(\{ \sigma \in n^n : \sigma \text{ is nondecreasing} \} \). For \(\sigma \in n^n \), define \(\delta \in \Omega \) by \(\delta(j) \equiv \text{cardinality of } \sigma^{-1}(j) \) for all \(j \in \mathbb{N} \). The \(\hat{\cdot} \) evidently a bijection.

Denote by \(P(m; n) \) the linear space of homogeneous real polynomials of degree \(m \), in \(n \) indeterminants. Let \(t \in P(m; n)^2 \) be a function whose range is the set of indeterminants. Then
FUNCTIONAL EQUATIONS FOR POLYNOMIALS

\[T \equiv \left\{ \prod_{\sigma \in \Omega} f^{(j)}(\sigma) : \sigma \in \Omega \right\} \]

is a basis for \(P(m; n) \). Let \(b \in E^n \) be a function whose range is a basis for \(E \) and write \(b^* \) for the function in \((E^*)^2\) whose range is the corresponding dual basis. For each \(\sigma \in n^m \), write \(b^{(\sigma)} \) for the element of \(\text{smm}(E) \) defined by

\[b^{(\sigma)}(x) = \frac{1}{m!} \sum_{\tau \in m^m} \prod_{j \in m} b^{*}_{\sigma(j)}(x_{\tau(j)}) \quad \text{for all } x \in E^m. \]

As is well known (see [1] for instance) \(S = \{ b^{(\sigma)} : \sigma \in n^m \} \) is a basis for \(\text{smm}(E) \). The map \(\cdot \) induces a bijection between \(T \) and \(S \) which extends uniquely to an isomorphism between \(P(m; n) \) and \(\text{smm}(E) \).

The space \(P(m; n) \) can be realized concretely in terms of the function \(b \) by replacing the indeterminant function with \(b^* \). We write \(P_b(m; n) \) for the linear span of the functions on \(E \) by \(\prod_{\sigma \in \Omega} (b^{*})^{(j)}(\sigma) \), \(\sigma \in \Omega \). Thus, \(\cdot \) also induces an isomorphism between \(\text{smm}(E) \) and \(P_b(m; n) \). For each constant function \(x \in E^m \) and \(\sigma \in n^m \), we have

\[b^{(\sigma)}(x) = \frac{1}{m!} \sum_{\tau \in m^m} \prod_{j \in m} b^{*}_{\sigma(j)}(x_{\tau(j)}) = \prod_{k \in n} \left[(b^{*})(x_k) \right]^{(k)} \]

so that, by Theorem 1, \(\prod_{\sigma \in \Omega} (b^{*})^{(j)}(\sigma) \) is in \(l_m(E) \) and \(b^{(\sigma)} \) is its image by \(\phi \). Hence, \(\phi \) is just the isomorphism between \(\text{smm}(E) \) and \(P_b(m; n) \) induced by \(b \).

Corollary 2. For each \(b \in E^n \) such that \(b(n) \) is a basis, \(P_b(m; n) = l_m(E) \).

Now consider a function \(f \) defined and \(m \) times continuously differentiable on some open subset \(W \) of \(E \). For each \(p \in W \) and \(x \in E \), define

\[f^{(m)}(x) = \left[\frac{d^mf(p + tx)/(dt)^m}{m!} \right]. \]

In coordinate-free calculus, the \(m \)th derivative \(D^{mf}(p) \) at \(p \) is often considered to be the unique element of \(\text{smm}(E) \) such that, when \(b \in E^n \) is any basis function inducing on \(E \) a coordinate system,

\[\left[D^{mf}(p) \right](b) = \frac{\partial^{mf}(\sigma)}{\partial b_{(1)} \partial b_{(2)} \cdots \partial b_{(m)}}(p) \]

for all \(\sigma \in n^m \). In particular, for \(\sigma \in 1^m \subset n^m \), we have

\[\left[D^{mf}(p) \right](b_1) = \partial^{mf}(p)/(b_1)^m = f^{(m)}(b_1). \]

Since \(D^{mf}(p) \) is basis independent and \(b_1 \) was chosen arbitrarily, this means that

\[\left[D^{mf}(p) \right](x) = f^{(m)}(x_1) \quad \text{for all constant } x \in E^m. \]

From the Theorem, it now follows that \(D^{mf}(p) \) is just the image under \(\phi \) of \(f^{(m)} \), the latter being perhaps more easy to compute than the former.
Corollary 3. For each \(x \in E^m \) and \(p \in W \), we have
\[
\left[D^m f(p) \right](x) = \sum_{k \in m} (-1)^{m-k} \sum_{\sigma \in m^k} f^{(m)}_p \left(\sum_{j \in k} x_{\sigma(j)} \right).
\]

Now suppose that \(f \) is, in addition, analytic on \(W \). Then, for each \(p \in W \), the power series expansion about \(p \) for \(f \) can be expressed
\[
f(x - p) = \sum_{m=0}^{\infty} f^{(m)}_p (x - p)
\]
where \(f^{(0)}_p \) is defined to be the constant function with value \(f(p) \). Similar formulae hold for Taylor series approximations.

References

Department of Mathematics, Washington State University, Pullman, Washington 99163