Comparison of two types of order convergence with topological convergence in an ordered topological vector space

Authors:
Roger W. May and Charles W. McArthur

Journal:
Proc. Amer. Math. Soc. **63** (1977), 49-55

MSC:
Primary 46A40

DOI:
https://doi.org/10.1090/S0002-9939-1977-0438078-9

MathSciNet review:
0438078

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Birkhoff and Peressini proved that if is a complete metrizable topological vector lattice, a sequence converges for the topology iff the sequence relatively uniformly star converges. The above assumption of lattice structure is unnecessary. A necessary and sufficient condition for the conclusion is that the positive cone be closed, normal, and generating. If, moreover, the space is locally convex, Namioka [11, Theorem 5.4] has shown that coincides with the order bound topology and Gordon [4, Corollary, p. 423] (assuming lattice structure and local convexity) shows that metric convergence coincides with relative uniform star convergence. Omitting the assumptions of lattice structure and local convexity of it is shown for the nonnecessarily local convex topology that and when is locally convex.

**[1]**Garrett Birkhoff,*Lattice theory*, Third edition. American Mathematical Society Colloquium Publications, Vol. XXV, American Mathematical Society, Providence, R.I., 1967. MR**0227053****[2]**Lyne H. Carter,*An order topology in ordered topological vector spaces*, Trans. Amer. Math. Soc.**216**(1976), 131–144. MR**0390704**, https://doi.org/10.1090/S0002-9947-1976-0390704-2**[3]**J. M. Ceĭtlin,*Unconditional bases and semiorderedness*, Izv. Vysš. Učebn. Zaved. Mat.**1966**, no. 2(51), 98-104; English transl., Amer. Math. Soc. Transl. (2)**90**(1970), 17-25. MR**33**#6362;**41**#8191.**[4]**Hugh Gordon,*Relative uniform convergence*, Math. Ann.**153**(1964), 418–427. MR**0161123**, https://doi.org/10.1007/BF01360676**[5]**Graham Jameson,*Ordered linear spaces*, Lecture Notes in Mathematics, Vol. 141, Springer-Verlag, Berlin-New York, 1970. MR**0438077****[6]**L. V. Kantorovič, B. Z. Vulih, and A. G. Pinsker,*Partially ordered groups and partially ordered linear spaces*, Amer. Math. Soc. Transl. (2)**27**(1963), 51–124. MR**0151532****[7]**J. L. Kelley and Isaac Namioka,*Linear topological spaces*, With the collaboration of W. F. Donoghue, Jr., Kenneth R. Lucas, B. J. Pettis, Ebbe Thue Poulsen, G. Baley Price, Wendy Robertson, W. R. Scott, Kennan T. Smith. The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J., 1963. MR**0166578****[8]**V. L. Klee Jr.,*Boundedness and continuity of linear functionals*, Duke Math. J.**22**(1955), 263–269. MR**0069387****[9]**W. A. J. Luxemburg and A. C. Zaanen,*Riesz spaces. Vol. I*, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., New York, 1971. North-Holland Mathematical Library. MR**0511676****[10]**R. W. May,*Comparison of order topologies with the topology of an ordered topological vector space*, Doctoral Dissertation, Florida State Univ., Tallahassee, 1975.**[11]**Isaac Namioka,*Partially ordered linear topological spaces*, Mem. Amer. Math. Soc. no.**24**(1957), 50. MR**0094681****[12]**Anthony L. Peressini,*Ordered topological vector spaces*, Harper & Row, Publishers, New York-London, 1967. MR**0227731****[13]**B. Z. Vulikh,*Introduction to the theory of partially ordered spaces*, Translated from the Russian by Leo F. Boron, with the editorial collaboration of Adriaan C. Zaanen and Kiyoshi Iséki, Wolters-Noordhoff Scientific Publications, Ltd., Groningen, 1967. MR**0224522**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
46A40

Retrieve articles in all journals with MSC: 46A40

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1977-0438078-9

Keywords:
Relative uniform convergence,
order convergence,
normal cone,
generating cone,
relatively uniform topology,
order topology

Article copyright:
© Copyright 1977
American Mathematical Society