Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)


On the nonexistence of a projection from functions of $ x$ to functions of $ x\sp{n}$

Author: P. Milman
Journal: Proc. Amer. Math. Soc. 63 (1977), 87-90
MSC: Primary 58D15; Secondary 26A93
MathSciNet review: 0440600
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The subspace $ {\phi ^ \ast }{C^\infty }({{\mathbf{R}}^1}) \subset {C^\infty }({{\mathbf{R}}^1})$ of all $ {C^\infty }$ functions of $ \phi (x) = {x^n},n = 1,2,3, \ldots $, is a closed subspace of $ {C^\infty }({{\mathbf{R}}^1})$ by Glaeser's Composition Theorem. We prove that for $ n > 2$ there does not exist a linear continuous projection $ \pi $ from $ {C^\infty }({{\mathbf{R}}^1})$ onto $ {\phi ^ \ast }{C^\infty }({{\mathbf{R}}^1})$.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 58D15, 26A93

Retrieve articles in all journals with MSC: 58D15, 26A93

Additional Information

PII: S 0002-9939(1977)0440600-3
Keywords: Frechét space, Glaeser's Composition Theorem, open mapping theorem
Article copyright: © Copyright 1977 American Mathematical Society