Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

A quick proof of Harish-Chandra's Plancherel theorem for spherical functions on a semisimple Lie group


Author: Jonathan Rosenberg
Journal: Proc. Amer. Math. Soc. 63 (1977), 143-149
MSC: Primary 22E30; Secondary 43A90
MathSciNet review: 0507231
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Some lemmas of S. Helgason and R. Gangolli, originally conceived for proving an analogue of the Paley-Wiener theorem for symmetric spaces, are used to give a quick proof of Harish-Chandra's inversion formula and Plancherel theorem for bi-invariant functions on a semisimple Lie group. The method is elementary in that it does not require introduction of Harish-Chandra's ``Schwartz space."


References [Enhancements On Off] (What's this?)

  • [1] R. Gangolli, On the Plancherel formula and the Paley-Wiener theorem for spherical functions on semisimple Lie groups, Ann. of Math. (2) 93 (1971), 150–165. MR 0289724
  • [2] Ramesh Gangolli, Spherical functions on semisimple Lie groups, Symmetric spaces (Short Courses, Washington Univ., St. Louis, Mo., 1969–1970), Dekker, New York, 1972, pp. 41–92. Pure and Appl. Math., Vol. 8. MR 0420157
  • [3] S. G. Gindikin and F. I. Karpelevič, Plancherel measure for symmetric Riemannian spaces of non-positive curvature, Dokl. Akad. Nauk SSSR 145 (1962), 252–255 (Russian). MR 0150239
  • [4] Harish-Chandra, Spherical functions on a semisimple Lie group. I, Amer. J. Math. 80 (1958), 241–310. MR 0094407
  • [5] Harish-Chandra, Spherical functions on a semisimple Lie group. II, Amer. J. Math. 80 (1958), 553–613. MR 0101279
  • [6] Sigurđur Helgason, An analogue of the Paley-Wiener theorem for the Fourier transform on certain symmetric spaces, Math. Ann. 165 (1966), 297–308. MR 0223497
  • [7] Sigurđur Helgason, A duality for symmetric spaces with applications to group representations, Advances in Math. 5 (1970), 1–154 (1970). MR 0263988
  • [8] Sigurdur Helgason, Analysis on Lie groups and homogeneous spaces, American Mathematical Society, Providence, R.I., 1972. Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics, No. 14. MR 0316632
  • [9] G. Warner, Harmonic analysis on semisimple Lie groups. II, Springer-Verlag, Berlin and New York, 1972.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 22E30, 43A90

Retrieve articles in all journals with MSC: 22E30, 43A90


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1977-0507231-8
Keywords: Semisimple Lie group, spherical function, inversion formula, Plancherel theorem, c-function
Article copyright: © Copyright 1977 American Mathematical Society