ON THE HEIGHTS OF GROUP CHARACTERS

R. J. HAGGARTY

Abstract. For a finite p-soluble group G we derive a bound on the heights of the irreducible complex characters of G lying in a p-block B. This bound depends on the prime p and the exponent d of a defect group of B. We show by examples that this bound is of the right order of magnitude.

Let G be a finite group of order $p^e g_0$, where p is a fixed prime, e is an integer > 0, and $(g_0, p) = 1$. In the theory of modular representations, the characters of the irreducible complex representations of G may be partitioned into disjoint sets, the so-called blocks of G for the prime p. Associated with each block B is a p-subgroup D of G of order p^d, unique up to conjugacy in G. d is called the defect of the block B. If χ is an irreducible complex character of G, or as we shall say, an ordinary character of G, and χ lies in a block B, written $\chi \in B$, then χ has degree divisible by p to the exponent $(e - d + h(\chi))$. The nonnegative integer $h(\chi)$ is called the height of χ.

In [4] Fong proves the following: Let G be a finite p-soluble group and B be a block of G for the prime p. Suppose that B has defect group D and let $Z(D)$ denote the centre of D. Then for each ordinary character $\chi \in B$ we have $h(\chi) \leq \nu_p([D : Z(D)])$ where $\nu_p(t)$ denotes the exponent of p dividing t.

A slight modification of Fong's proof yields that for $d > 2$, $h(\chi)$ never exceeds $(d - 2)$. Brauer and Feit [2] obtain this bound for an arbitrary finite group. In this paper we prove the following result.

Theorem. Let G be a finite p-soluble group with a block B of defect $d > 2$. Then there exists a function $f(p, d)$ such that $h(\chi) \leq f(p, d)$ for all ordinary characters $\chi \in B$;

$$f(p, d) = \begin{cases} \left(\frac{3d - 4}{4} \right) & \text{if } p = 2, \\ \frac{(p^2 + 1)}{(p^2 - p + 1)} \left(\frac{d - 1}{2} \right) & \text{if } p \text{ is an odd Fermat prime,} \\ \frac{(p + 1)}{(p)} \frac{(d - 1)}{2} & \text{if } p \text{ is any other prime.} \end{cases}$$

We give examples to show that this bound is of the right order of magnitude.

Received by the editors March 28, 1975.
Key words and phrases. Modular representations, block, defect, height.
© American Mathematical Society 1977

213
Lemma 1. Let G be a finite p-soluble group and B be a block of G with defect group D, of order p^d. Suppose that $H < G$, then there exists an irreducible constituent of $\chi|_H$, say θ, such $h(\chi) \leq h(\theta) + v_p(|G : H|)$. $h(\theta)$ denotes the height of θ over the block b of H with $\theta \in b$ and $h(\chi)$ denotes the height of χ over B.

Proof. Choose a series $G = G_1 \supset G_2 \supset \cdots \supset G_r = H$ such that G_{i+1} is a maximal normal subgroup of G_i for $i = 1, \ldots, r - 1$. Define $e_i = r_p(|G_i|)$. Now choose ordinary characters χ_1, \ldots, χ_r such that χ_i is an ordinary character of G_i and $\chi = \chi_1$, and χ_{i+1} is an irreducible constituent of χ_i restricted to G_{i+1}. Now there exist blocks B_1, \ldots, B_r with B_i a block of G_i containing χ_i for $i = 1, \ldots, r$. Let $\theta = \chi$, and hence $B_r = B$. These conditions mean that B_i covers B_{i+1} in the sense of Brauer [1]. Finally let D_i be a defect group of B_i for each i and suppose that d_i = defect of B_i. We have

$$v_p(\deg \chi_i) = e_i - d_i + h(\chi_i) \quad \text{for } i = 1, \ldots, r.$$

When $|G_i : G_{i+1}|$ is coprime to p then by Clifford's theorem $v_p(\deg \chi_i)$ equals $v_p(\deg \chi_{i+1})$. Clearly $e_i = e_{i+1}$ and by $[1, 2E]$ $d_i = d_{i+1}$. Thus $h(\chi_i) = h(\chi_{i+1})$. Otherwise $|G_i : G_{i+1}| = p$ and Cliffords theorem yields that

$$v_p(\deg \chi_i) \leq v_p(\deg \chi_{i+1}) + 1.$$

Also $e_i = e_{i+1} + 1$ and by $[3]$, $d_i < d_{i+1} + 1$. We conclude that in this case $h(\chi) < h(\chi_{i+1}) + 1$.

Hence $h(\chi) = h(\chi_1) < h(\chi_r) + v_p(|G : H|) = h(\theta) + v_p(|G : H|)$ as required.

Lemma 2. If G is a finite p-soluble group which is faithfully and irreducibly represented on a vector space V of dimension n over $GF(p)$ then $\nu_G(|G|)$ does not exceed $\lambda(p, n)$ where

$$\lambda(p, n) = \begin{cases} (n - 1) & \text{if } p = 2, \\ \frac{(np)}{(p - 1)^2} & \text{if } p \text{ is an odd Fermat prime,} \\ n/(p - 1) & \text{otherwise.} \end{cases}$$

Proof. $\nu_2(|G|) < n - 1$ by Huppert [7, Satz 14]. For odd p a paper of Winter [8] yields that

$$\nu_p(|G|) \leq \sum_{i=0}^{\infty} \frac{n}{p^i(p - 1)}$$

for p Fermat, and

$$\sum_{i=0}^{\infty} \frac{n}{p^i}$$

for p not Fermat.

Since for $|x| < 1$, $\sum_{i=0}^{\infty} x^i = 1/(1 - x)$ our lemma follows easily.

Lemma 3. If G is a finite p-soluble group with $O_p(G) = O_p(G) \times O_p(G)$ and if $|O_p(G): \Phi(O_p(G))| = p^m$ where $|O_p(G)| = p^m$ then

$$\nu_p(|G|) \leq m + \lambda(p, n).$$
Proof. By [5, 1.2.5] \(G/O_{p^2}(G) \) is faithfully represented on \(O_p^p(G)/F \) where \(F/O_p(G) = \Phi(O_{p^2}(G)/O_p(G)) \). Thus under our hypotheses \(G/O_{p^2}(G) \) is faithfully represented on \(O_p(G)/\Phi(O_p(G)) \). Let \(L_1, \ldots, L_s \) denote the \(p \)-chief factors of \(G \) lying between \(O_p(G) \) and \(\Phi(O_p(G)) \). Then \(C = \bigcap_{i=1}^s C_p(L_i) \geq O_{p^2}(G) \) since \(O_{p^2}(G) \) centralizes all \(p \)-chief factors. For each \(i = 1, \ldots, s \) we have that \(G/C_p(L_i) \) is a faithful irreducible subgroup of \(GL(n_i, p) \) where \(n_i \) is just the rank of \(L_i \). Since \(C/O_{p^2}(G) \) is a group of automorphisms of a \(p \)-group which stabilizes a normal series for that group we conclude that \(C/O_{p^2}(G) \) is a \(p \)-group and thus \(C = O_{p^2}(G) \).

Now \(G/O_{p^2}(G) \) is isomorphic to a subgroup of \(G/C_G(L_1) \times \cdots \times G/C_G(L_s) \) so in particular
\[
\nu_p(|G : O_{p^2}(G)|) = \sum_{i=1}^s \nu_p(|G : C_G(L_i)|).
\]
Since \(\lambda(p, k) \) is linear in the second variable, and using Lemma 2 we see that \(\nu_p(|G|) < m + \lambda(p, n) \) as required.

Proof of Theorem. We proceed by induction on the order of \(G \). By [4, 2B and 2D] we may assume that all blocks of \(G \) have maximal defect, so \(d = \nu_p(|G|) \). Furthermore \(O_p(G) \) is cyclic and central in \(G \) so \(O_{p^2}(G) = O_p(G) \times O_{p^2}(G) \). Let \(H = O_p(G) \) and set \(|H| = p^m \) and \(|H : \Phi(H)| = p^n \). Let \(\theta \) be an irreducible constituent of \(\chi|_H \). Now \(\nu_p(|G : H|) = d - m \) and thus by Lemma 1 \(h(\chi) < h(\theta) + d - m \). We consider two possibilities:

(a) \(H \) is abelian. In this case \(h(\theta) = 0 \) and by Lemma 3, since \(n < m \) we have that \(d < m + \lambda(p, m) \). When \(p = 2, \lambda(2, m) = m - 1 \) and so \(d < 2m - 1 \). Hence \(h(\chi) < (d - 1)/2 \). For \(p \) an odd Fermat prime a similar calculation yields \(h(\chi) < (pd)/(p^2 - p + 1) \). Finally for \(p \) odd and not Fermat, using Lemma 2 again we deduce that \(h(\chi) < d/p \). These three bounds are less than the ones appearing in the statement of the theorem.

(b) \(H \) is nonabelian. Now \(h(\theta) < (m - 1)/2 \) since \(\theta \) is a character of a nonabelian \(p \)-group of order \(p^m \). Also \(H \) nonabelian implies that \(n \leq m - 1 \). Thus \(h(\chi) < d - (m + 1)/2 \) by Lemma 1 and \(d < m + \lambda(p, m - 1) \) by Lemma 3. For \(p = 2, d < 2(m - 1) \) and so \(h(\chi) < (3d - 4)/4 \). When \(p \) is an odd Fermat prime then \(d < (m(p^2 - p + 1) - p)/(p - 1)^2 \) and thus \(h(\chi) < ((p^2 + 1)/(p^2 - p + 1))(d - 1)/2 \). Finally for non-Fermat primes \(p, d < (mp - 1)/(p - 1) \) and a brief calculation yields
\[
h(\chi) < ((p + 1)/p)((d - 1)/2).
\]
Our theorem is now proved.

The theorem is best possible in the following sense: Given an odd integer \(d > 1 \) choose \(p \) to be a prime with \(p > d \). Now there exists an extraspecial \(p \)-group of order \(p^d \); this group possesses an ordinary character of height \(\frac{1}{2}(d - 1) \). We have so chosen things that \(\frac{1}{2}(d - 1) \) is the greatest integer less than \(f(p, d) \). We give less trivial examples for \(p = 2 \) and \(p = 3 \) below.

(1) Let \(G_i \cong GL(2, 3) \), the group of \(2 \times 2 \) matrices over the Galois field of three elements, for \(i = 1, 2, \ldots, n \). Form the central product \(G(n) = G_1 Y G_2 Y \cdots Y G_n \) (see [6, I.9.10]). Let \(Z(G_i) = gp\{z_i : z_i^2 = 1\} \) then \(G(n) \cong (G_1 \times G_2 \times \cdots \times G_n)/\Delta \) where \(\Delta = gp\{z_1z_1^{-1}, z_2z_2^{-1}, \ldots, z_nz_n^{-1}\} \). Now \(G \)
is a 2-soluble group and $O_2(G(n)) = 1$. Thus $G(n)$ possesses one block for the prime 2 and hence this has defect $d = 3n + 1$. G_i has a character θ_i of degree four such that $\theta_i(z_i) = -4$. Form $\theta_1 \otimes \theta_2 \otimes \cdots \otimes \theta_n = \chi$, an irreducible character of $G(n)$, since one easily checks that $\Delta \leq \text{Ker } \chi$. We have that $h(\chi) = 2n = 2(d - 1)/3$.

(2) Let E be the extraspecial 3-group of order 27 and exponent 3. Since $\text{SL}(2,3)$ is isomorphic to a subgroup of the automorphism group of E, we may form the semidirect product of E by $\text{SL}(2,3)$. Denote this group by H. H has a centre of order 3 and furthermore has an irreducible character of degree 9, say α. If $Z(H) = \langle z_i : z_i^3 = 1 \rangle$ then $\alpha(z_i) = 9\omega$ and $\alpha(z_i^2) = 9\omega^2$ where ω is a primitive cube root of unity. As in the previous example we construct $H(n)$, the central product of n copies of H. $H(n)$ is a 3-soluble group in which $O_3(H(n)) = 1$ and so $H(n)$ has a unique block for the prime 3 and this has defect $d = 3n + 1$. The character $\psi = \text{tensor product of } n \text{ copies of } \alpha$, is an irreducible character of $H(n)$. ψ has height $2n = 2(d - 1)/3$.

We have shown that if $g(p,d)$ is the precise bound on the heights of p-soluble groups then

$$2(d - 1)/3 \leq g(2,d) \leq 3(d - 1)/4,$$

$$2(d - 1)/3 \leq g(3,d) \leq 5(d - 1)/7.$$

In fact there exist examples for all primes p of p-soluble groups G with a p-block B, of defect d, containing an ordinary character of height exceeding $(d - 1)/2$.

REFERENCES

Department of Pure Mathematics, University of Liverpool, Liverpool, Great Britain

Current address: Department of Mathematics, Oxford Polytechnic, Oxford, Great Britain