Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Killing characteristic classes by surgery


Author: Stavros Papastavridis
Journal: Proc. Amer. Math. Soc. 63 (1977), 353-358
MSC: Primary 57D20
DOI: https://doi.org/10.1090/S0002-9939-1977-0440568-X
MathSciNet review: 0440568
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let M be an n-dimensional $ {C^\infty }$ manifold and let

$\displaystyle c \in {H^\ast}(BO;{Z_2})$

be a characteristic class. Suppose that c as a factor annihilates all the characteristic numbers of M. We prove that if $ \dim c \geqslant (n + 1)/2$ then M is cobordant to a manifold which has the class c zero, in that way answering in the affirmative a question raised by C. T. C. Wall. We examine the same question for more general cobordism theories, and for $ {Z_p}$ characteristic classes.

References [Enhancements On Off] (What's this?)

  • [1] D. W. Anderson, E. H. Brown, Jr. and F. P. Peterson, The structure of the spin cobordism ring, Ann. of Math. (2) 86 (1967), 271-298. MR 36 #2160. MR 0219077 (36:2160)
  • [2] -, SU-cobordism, KO-characteristic numbers, and the Kervaire invariant, Ann. of Math. (2) 83 (1966), 54-67. MR 32 #6470. MR 0189043 (32:6470)
  • [3] -, Spin cobordism and related topics, Comment. Math. Helv. 44 (1969), 462-468. MR 41 #6226. MR 0261613 (41:6226)
  • [4] William Browder, The Kervaire invariant of framed manifolds and its generalizations, Ann. of Math. (2) 90 (1969), 157-186. MR 40 #4963. MR 0251736 (40:4963)
  • [5] Henri Cartan, Sur les groupes d'Eilenberg-Mac Lane. II, Proc. Nat. Acad. Sci. U.S.A. 40 (1954), 704-707. MR 16, 390. MR 0065161 (16:390b)
  • [6] P. E. Conner and E. E. Floyd, Torsion in SU-cobordism, Mem. Amer. Math. Soc. No. 60 (1966). MR 32 #6471. MR 0189044 (32:6471)
  • [7] A. Dold, Vollständigkeit der Wuschen Relationen zwischen den Stiefel-Whitneyschen Zahlen differenzierbarer Mannigfaltigkeiten, Math. Z. 65 (1956), 200-206. MR 18, 143. MR 0079765 (18:143a)
  • [8] R. Lashof, Poincaré duality and cobordism, Trans. Amer. Math. Soc. 109 (1963), 257-277. MR 27 #6281. MR 0156357 (27:6281)
  • [9] J. Milnor, On the Stiefel-Whitney numbers of complex manifolds and spin manifolds, Topology 3 (1965), 223-230. MR 31 #5207. MR 0180977 (31:5207)
  • [10] R. Mosher and M. Tangora, Cohomology operations and applications to homotopy theory, Harper and Row, New York and London, 1968. MR 37 #2223. MR 0226634 (37:2223)
  • [11] J. Reed, Killing cohomology classes by surgery, Proc. Advanced Study Inst. on Algebraic Topology (August, 1970), Vol. II, Mat. Inst., Aarhus Univ., Aarhus, 1970, pp. 446-454. MR 42 #6846. MR 0271965 (42:6846)
  • [12] J. P. Serre, Homologie singulière des espaces fibres, Ann. of Math. (2) 54 (1951), 425-504. MR 13, 574. MR 0045386 (13:574g)
  • [13] -, Groupes d'homotopie et classes de groupes abéliens, Ann. of Math. (2) 58 (1953), 258-294. MR 15, 548.
  • [14] R. E. Stong, Notes on cobordism theory, Math. Notes, Princeton Univ. Press, Princeton, N. J., 1968. MR 40 #2108. MR 0248858 (40:2108)
  • [15] -, Cobordism and Stiefel-Whitney classes, Topology 4 (1965), 241-256. MR 34 #5095. MR 0205262 (34:5095)
  • [16] E. Spanier, Algebraic topology, McGraw-Hill, New York, 1966. MR 35 #1007. MR 0210112 (35:1007)
  • [17] N. E. Steenrod and D. B. A. Epstein, Cohomology operations, Ann. of Math. Studies, no. 50, Princeton Univ. Press, Princeton, N. J., 1962. MR 26 #3056. MR 0145525 (26:3056)
  • [18] R. Thom, Quelques properiétés globales des variétés differentiables, Comment. Math. Helv. 28 (1954), 17-86. MR 15, 890. MR 0061823 (15:890a)
  • [19] C. T. C. Wall, Surgery on compact manifolds, Academic Press, New York, 1970. MR 0431216 (55:4217)
  • [20] -, Determination of the cobordism ring, Ann. of Math. (2) 72 (1960), 292-311. MR 22 #11403. MR 0120654 (22:11403)
  • [21] A. Wallace, Modifications and cobounding manifolds, Canad. J. Math. 12 (1960), 503-528. MR 23 #A2887. MR 0125588 (23:A2887)
  • [22] E. Brown and F. Peterson, Relations among characteristic classes. I, Topology 3 (1964), 39-52. MR 29 #629. MR 0163326 (29:629)
  • [23] S. Papastavridis, A formula for the obstruction to transversality, Topology 11 (1972), 415-416. MR 47 #1054. MR 0312497 (47:1054)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 57D20

Retrieve articles in all journals with MSC: 57D20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1977-0440568-X
Keywords: Characteristic classes, characteristic numbers, cobordism, surgery, Steenrod Algebra, Serre spectral sequence
Article copyright: © Copyright 1977 American Mathematical Society

American Mathematical Society