Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

$ {\rm mod}$ $ p$ Wu formulas for the Steenrod algebra and the Dyer-Lashof algebra


Author: P. Brian Shay
Journal: Proc. Amer. Math. Soc. 63 (1977), 339-347
MSC: Primary 55G05; Secondary 55F45
DOI: https://doi.org/10.1090/S0002-9939-1977-0454974-0
MathSciNet review: 0454974
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Formulas for the polynomials $ {\mathcal{P}^i}({c_j})$ and $ {Q^i}({a_j})$ in $ {H^\ast}(BU;{Z_p})$ and $ {H_\ast}(BU;{Z_p})$, analogous to Wu's formulas for $ S{q^i}({w_j})$, are given.


References [Enhancements On Off] (What's this?)

  • [1] S. O. Kochman, Homology of the classical groups over the Dyer-Lashof algebra, Trans. Amer. Math. Soc. 185 (1973), 83-136. MR 48 #9719. MR 0331386 (48:9719)
  • [2] D. Moore, Homology operations for classifying spaces of certain groups, Thesis, Northwestern Univ., June 1974.
  • [3] S. Priddy, Dyer-Lashof operations for the classifying spaces of certain matrix groups, Quart. J. Math. Oxford Ser. (2) 26 (1975), 179-193. MR 0375309 (51:11505)
  • [4] P. B. Shay, $ {H^\ast}(BU)$ over the Steenrod and Dyer-Lashof algebras (to appear).
  • [5] -, Bipolynomial Hopf algebras, $ {H^\ast}(BSU;Z)$ et al., J. Pure Appl. Algebra (to appear). MR 0340320 (49:5075)
  • [6] N. Steenrod and D. Epstein, Cohomology operations, Ann. of Math. Studies, no. 50, Princeton Univ. Press, Princeton, N. J., 1962. MR 26 #3056. MR 0145525 (26:3056)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 55G05, 55F45

Retrieve articles in all journals with MSC: 55G05, 55F45


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1977-0454974-0
Article copyright: © Copyright 1977 American Mathematical Society

American Mathematical Society