On certain weighted partitions and finite semisimple rings
Authors:
L. B. Richmond and M. V. Subbarao
Journal:
Proc. Amer. Math. Soc. 64 (1977), 1319
MSC:
Primary 10J20
MathSciNet review:
0439789
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Let k be a fixed integer and define . Thus is the ordinary divisor function and is the number of kth powers dividing n. We derive the asymptotic behaviour as of defined by Thus is the number of partitions of n where we recognize different colours of the integer m when it occurs as a summand in a partition. The case is of special interest since the number of semisimple rings with n elements when is given by .
 [1]
Ian
G. Connell, A number theory problem concerning finite groups and
rings, Canad. Math. Bull. 7 (1964), 23–34. MR 0158927
(28 #2149)
 [2]
G.
H. Hardy and E.
M. Wright, An introduction to the theory of numbers, Oxford,
at the Clarendon Press, 1954. 3rd ed. MR 0067125
(16,673c)
 [3]
Bruce
Richmond, A general asymptotic result for partitions, Canad.
J. Math. 27 (1975), no. 5, 1083–1091 (1976). MR 0384731
(52 #5604)
 [4]
K.
F. Roth and G.
Szekeres, Some asymptotic formulae in the theory of
partitions, Quart. J. Math., Oxford Ser. (2) 5
(1954), 241–259. MR 0067913
(16,797b)
 [5]
John
Knopfmacher, Arithmetical properties of finite rings and algebras,
and analytic number theory, J. Reine Angew. Math. 252
(1972), 16–43. MR 0313214
(47 #1769)
 [6]
John
Knopfmacher, Arithmetical properties of finite rings and algebras,
and analytic number theory. IV. Relative asymptotic enumeration and
𝐿series, J. Reine Angew. Math. 270 (1974),
97–114. MR
0364134 (51 #389)
 [1]
 I. G. Connell, A number theory problem concerning finite groups and rings, Canad. Math. Bull. 7 (1964), 2334. MR 28 #2149. MR 0158927 (28:2149)
 [2]
 G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, 4th ed., Oxford Univ. Press, London, 1960. (3rd ed., 1954; MR 16, 673.) MR 0067125 (16:673c)
 [3]
 L. B. Richmond, A general asymptotic result for partitions, Canad. J. Math. 27 (1975), 10831091. MR 0384731 (52:5604)
 [4]
 K. F. Roth and G. Szekeres, Some asymptotic formulae in the theory of partitions, Quart. J. Math. Oxford Ser. (2) 5 (1954), 244259. MR 16, 797. MR 0067913 (16:797b)
 [5]
 J. Knopfmacher, Arithmetical properties of finite rings and algebras, and analytic number theory, J. Reine Angew. Math. 252 (1972), 1643. MR 47 #1769. MR 0313214 (47:1769)
 [6]
 , Arithmetical properties of finite rings and algebras, and analytic number theory. IV, J. Reine Angew. Math. 270 (1974), 97114. MR 51 #389. MR 0364134 (51:389)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC:
10J20
Retrieve articles in all journals
with MSC:
10J20
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029939197704397891
PII:
S 00029939(1977)04397891
Article copyright:
© Copyright 1977
American Mathematical Society
