On certain weighted partitions and finite semisimple rings

Authors:
L. B. Richmond and M. V. Subbarao

Journal:
Proc. Amer. Math. Soc. **64** (1977), 13-19

MSC:
Primary 10J20

MathSciNet review:
0439789

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let *k* be a fixed integer and define . Thus is the ordinary divisor function and is the number of *k*th powers dividing *n*. We derive the asymptotic behaviour as of defined by

*n*where we recognize different colours of the integer

*m*when it occurs as a summand in a partition. The case is of special interest since the number of semisimple rings with

*n*elements when is given by .

**[1]**Ian G. Connell,*A number theory problem concerning finite groups and rings*, Canad. Math. Bull.**7**(1964), 23–34. MR**0158927****[2]**G. H. Hardy and E. M. Wright,*An introduction to the theory of numbers*, Oxford, at the Clarendon Press, 1954. 3rd ed. MR**0067125****[3]**Bruce Richmond,*A general asymptotic result for partitions*, Canad. J. Math.**27**(1975), no. 5, 1083–1091 (1976). MR**0384731****[4]**K. F. Roth and G. Szekeres,*Some asymptotic formulae in the theory of partitions*, Quart. J. Math., Oxford Ser. (2)**5**(1954), 241–259. MR**0067913****[5]**John Knopfmacher,*Arithmetical properties of finite rings and algebras, and analytic number theory*, J. Reine Angew. Math.**252**(1972), 16–43. MR**0313214****[6]**John Knopfmacher,*Arithmetical properties of finite rings and algebras, and analytic number theory. IV. Relative asymptotic enumeration and 𝐿-series*, J. Reine Angew. Math.**270**(1974), 97–114. MR**0364134**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
10J20

Retrieve articles in all journals with MSC: 10J20

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1977-0439789-1

Article copyright:
© Copyright 1977
American Mathematical Society