ON HILBERT CLASS FIELDS IN CHARACTERISTIC $p > 0$
AND THEIR L-FUNCTIONS

STUART TURNER

ABSTRACT. Let k be a global field of characteristic $p > 0$ with field of constants \mathbb{F}_q. Let \bar{k} be an algebraic closure of k. In this note we study the subfields of \bar{k} which are maximal unramified abelian extensions of k with field of constants \mathbb{F}_q. Each of these fields may be regarded as an analogue of the Hilbert class field of algebraic number theory [1, p. 79]. In §1 we recall the construction of these class fields and in §2 we show that if k has genus one, they are all \mathbb{F}_q-isomorphic. In §3 we show that this is not necessarily the case if the genus of k is greater than one. The argument there is based on an observation about the L-functions of the fields.

1. Let k_1^* be the idele group of k and identify k^* with the principal ideles in k_1^*. Let k_1^+ be the ideles of module 1 and U be the maximal compact subgroup of k_1^+. Let D be a complete nonsingular curve defined over \mathbb{F}_q with function field isomorphic to k. D is unique up to \mathbb{F}_q isomorphism. Let $J(D)(\mathbb{F}_q)$ denote the group of \mathbb{F}_q-rational points on $J(D)$, the Jacobian variety of D. $J(D)(\mathbb{F}_q)$ is a finite group. Let $h = \text{card}(J(D)(\mathbb{F}_q))$. k_1^+/k^* is canonically isomorphic to $J(D)(\mathbb{F}_q)$.

We now recall straightforward (and well-known) consequences of the existence theorem [1, Chapter VIII, in particular §3], [3, Chapter XIII, §9].

Let $z \in k_1^*$ with module $(z) = q$. Let u_1, \ldots, u_h be representatives of the cosets of k^*U in k_1^+. Then $N_i = \{zu_i\} \times k^*U$ are distinct open subgroups of k_1^* and each k_1^*/N_i is canonically isomorphic to k_1^+/k^*U. The class fields k_1, k_2, \ldots, k_h of N_1, N_2, \ldots, N_h, respectively, are unramified abelian extensions of k each with constant field \mathbb{F}_q and each $\text{Gal}(k_i/k)$ is canonically isomorphic to $J(D)(\mathbb{F}_q)$.

Furthermore, these k_i are the only maximal unramified abelian extensions of k with constant field \mathbb{F}_q, because any $x \in k_1^*$ with module $(x) = q$ lies in one of the cosets zu^k, U. Let L be the constant field extension of k of degree h. L is the class field of the subgroup $\{z^h\} \times k_1^+$ so Lk_i is the class field of $\{z^h\} \times k_1^+ \cap \{zu_i\} \times k^*U = \{(zu_i)^h\} \times k^*U$, $i = 1, \ldots, h$.

But $(zu_i)^h$ and $(zu_j)^h$ represent the same coset of k_1^+ in k_1^*, so $Lk_i = Lk_j$, $1 \leq i, j \leq h$.

Let C_i be a complete nonsingular curve defined over \mathbb{F}_q with function field...
isomorphic to k_i. The C_i are unique up to F_q-isomorphism. Since k_i is an unramified extension of k, there exist surjective étale morphisms $\gamma_i: C_i \to D$ defined over F_q. Let g be the genus of D; then, $g(C_i)$, the genus of C_i, is given by $2g(C_i) - 2 = h(2g - 2)$ [3, Chapter VIII, Corollary to Proposition 14]. Summarizing the discussion in geometric terms we have

Theorem 1. Let D be a complete nonsingular curve of genus g defined over F_q. Let $J(D)$ be the Jacobian variety of D and $G = J(D)(F_q)$ be the group of F_q-rational points of $J(D)$. Let $h = \text{card } G$. Then there exist h complete nonsingular curves C_i defined over F_q each of genus $h(g - 1) + 1$, and morphisms $\gamma_i: C_i \to D$ defined over F_q such that γ_i is an étale cover of degree h. The Galois group of the cover γ_i is isomorphic to G.

Observe that for $i \neq j$ there does not exist any morphism $\delta: C_i \to C_j$ such that $\gamma_j \circ \delta = \gamma_i$; for the existence of such a morphism would imply the existence of a k-isomorphism of k_j onto a subfield of k_i, but this is impossible because k_j and k_i are distinct normal extensions of k in k.

However, if D has genus one, C_i is F_q-isomorphic to C_j for all $i, j, 1 \leq i, j \leq h$. This is proven in §2.

2.

Lemma 1. Let v be a place of k of degree one. Then v splits completely in precisely one of the class fields k_i, $1 \leq i < h$.

Proof. The places of k_j which lie above v are in one-to-one correspondence with the cosets of $k_v^*N_j$ in k_v^* [3, Chapter XIII, Proposition 14], so v splits completely in k_j if and only if $[k_v^*: k_v^*N_j] = h$. On the other hand, $[k_v^*: N_j] = h$, so v splits completely in k_j if and only if $k_v^* \subset N_j = \{z_i\} \times k^*U$. Let r_v be the valuation ring in k_v. $r_v^* \subset N_i$ for all $i, 1 \leq i < h$. Let π_v be a prime element in r_v. Since v is a place of degree one, module $(\pi_v^{-1}) = q$. So $\pi_v \in N_i$ if and only if $\pi_vz^{-1} \in u_kk^*U$; there is a unique i for which this is the case.

Remark. The hypothesis of Lemma 1 is not always satisfied. There exist global fields which do not have places of degree one.

Lemma 2. If k has genus one and k_i is the class field determined by N_i, then there is a unique place v of k of degree one that splits completely in k_i.

Proof. k_i has genus one, hence has a place w of degree one. w has residue field F_{q_i} and lies over a place v of k of degree one. w has h distinct conjugates $w = w_1, \ldots, w_h$ over v because $\sum e(w_i)f(w_i) = h, e(w_i) = 1$ for $i = 1, \ldots, h$, and $f(w) = 1$.

Theorem 2. Let notations be as in Theorem 1 and assume that D is a curve of genus one. Then there is a canonical one-to-one correspondence between the rational points of D and the curves C_i. A rational point P of D corresponds to the curve C_i if and only if there are h points of C_i in the fiber $\gamma_i^{-1}(P)$.
HILBERT CLASS FIELDS

Proof. D is \mathbb{F}_q-isomorphic to $J(D)$, so D has h rational points. The theorem now follows from Lemmas 1 and 2.

Throughout the rest of this section we assume that k has genus one.

Let v be a place of k and $\rho: k \rightarrow k_v$ be an embedding of k into the completion of k at v. Let k' be a field and $\alpha: k' \rightarrow k$ be an isomorphism. Denote by αv the place of k' arising from the embedding $\rho \circ \alpha: k' \rightarrow k_v$. Denote by $v(i)$ the place of k which corresponds to the class field k_i.

Lemma 3. Let $\beta: k_j \rightarrow k_i$ be an \mathbb{F}_q-isomorphism such that $\beta(k) \subset k$ and let $\alpha = \beta|_k$. Then $v(j) = \alpha v(i)$. Conversely, if $\alpha: k \rightarrow k$ is an \mathbb{F}_q-isomorphism such that $v(j) = \alpha v(i)$, then there is an \mathbb{F}_q-isomorphism $\beta: k_j \rightarrow k_i$ such that $\beta|_k = \alpha$.

Proof. Let w be a place of k_i of degree one. βw is a place of k_j of degree one. By Lemma 2, w lies over $v(i)$ and βw lies over $v(j)$ so $v(j) = \alpha v(i)$.

To prove the converse observe that there are h distinct embeddings $\beta_i: k_j \rightarrow k$, $1 \leq i \leq h$, such that $\beta_i|_k = \alpha$.

The β_i all have the same image L in k. L is an unramified abelian extension of k with field of constants \mathbb{F}_q. It suffices to show that $L = k_i$. Let w be a place of k_j of degree one and u be the place of $\beta_i(k_j)$ such that $w = \beta_i u$. By Lemma 2, w lies over $v(j)$ and u lies over $v(i)$ because $v(j) = \alpha v(i)$. So u is a place of k_i and $L = k_i$.

Let $k(D)$, $k(C_i)$ and $k(C_j)$ be the function fields of D, C_i and C_j, respectively. The morphisms γ_i and γ_j of Theorem 1 define injections $\gamma_i^*: k(D) \rightarrow k(C_i)$ and $\gamma_j^*: k(D) \rightarrow k(C_j)$. Choose \mathbb{F}_q-isomorphisms of $k(D)$ with k, of $k(C_i)$ with k_i, and of $k(C_j)$ with k_j; so that γ_i^* (resp. γ_j^*) is compatible with the inclusion $k \subset k_i$ (resp. $k \subset k_j$). Identify $k(D)$ with k, $k(C_i)$ with k_i, and $k(C_j)$ with k_j by means of these isomorphisms. The places $v(i)$, $1 \leq i \leq h$, of k are thus identified with places of $k(D)$. Let P_i, $1 \leq i \leq h$, be the rational points of D corresponding to the places $v(i)$, $1 \leq i \leq h$, of $k(D)$, respectively.

Theorem 3. Let the notations be as in Theorem 1 and assume that D is a curve of genus one. Let η be an \mathbb{F}_q-automorphism of D. Then there exists an \mathbb{F}_q-isomorphism $\delta: C_i \rightarrow C_j$ such that $\gamma_j \circ \delta = \eta \circ \gamma_i$ if and only if $\eta(P_i) = P_j$.

Proof. Let $\eta^*: k(D) \rightarrow k(D)$ be the automorphism of $k(D)$ induced by η. $\eta(P_i) = P_j$ is equivalent to the condition $\nu(j) = \eta^* \nu(i)$. By Lemma 3 there is an \mathbb{F}_q-isomorphism $\beta: k(C_i) \rightarrow k(C_j)$ such that $\beta|_{k(D)} = \eta^*$. β determines an \mathbb{F}_q-isomorphism $\delta: C_i \rightarrow C_j$ such that $\gamma_j \circ \delta = \eta \circ \gamma_i$. The proof of the converse follows similarly from the first assertion of Lemma 3.

Corollary. Let the notations be as in Theorem 1 and assume that D has genus one. Then there exist \mathbb{F}_q-isomorphisms $\delta: C_i \rightarrow C_j$ for all i, j, $1 \leq i, j \leq h$.

Proof. Since D has genus one, the group of \mathbb{F}_q-isomorphisms of D acts transitively on the \mathbb{F}_q-rational points of D. The assertion now follows from the theorem.
Returning to the discussion in §1, recall that the fields $k_i \subset \bar{k}$ were defined as the class fields of subgroups N_i of k^\times. Let Ω_i be the group of characters of k^\times_i trivial on N_i and Ω_i' be the elements of Ω_i distinct from the trivial character. Then the Dedekind zeta function of k_i is given by $\xi_k(s) = \xi_k(s) \cdot \prod_{\omega \in \Omega_i} L(s, \omega)$ [3, Chapter XIII, §10].

In case k has genus one, the $L(s, \omega)$ are all identically one [3, Chapter VII, §7], but if the genus of k is greater than one, these L-functions are nontrivial. Throughout this section we assume that the genus of k is at least two.

For $s \in \mathbb{C}$, let $\omega_2^i : k^\times_i \rightarrow \mathbb{C}^\times$ be the quasicharacter defined by $\omega_2^i(z) = |z|^2$; $\omega_j^i : k^\times_i \rightarrow 1$.

Lemma 4. Let $\omega \in \Omega_1$, $\omega \neq 1$, and let $\omega(zu_i) = q^{-s_2(\omega)}$. There is a one-to-one correspondence between Ω_1 and Ω_i given by $\omega \leftrightarrow \omega \omega_2(\omega)$.

Proof. ω has order h so $q^{-s_2(\omega)}$ is an hth root of one and $s_2(\omega)$ is defined modulo elements of $(2\pi i / \log q)\mathbb{Z}$. ω and ω_2^i induce the trivial character on $k^\times U$, so $\omega_\omega_2^i \in \Omega_i$ if and only if $\omega \omega_2^i(zu_i) = 1$.

This is equivalent to $s \equiv s_2(\omega) \pmod{(2\pi i / \log q)\mathbb{Z}}$. The verification that the correspondence between Ω_1 and Ω_i is one-to-one is left to the reader.

Lemma 4 and the definition of the L-functions give

Proposition.

$$L^*\left(s, \prod_{\omega_2^i} L(\omega_2^i, s) = \prod_{\omega_2^i} L(\omega, s + s_2(\omega)) \right).$$

$\xi_k^* = \xi_k^i$, for $1 \leq i, j \leq h$, if and only if $J(C_i)$ is F_q-isogenous to $J(C_j)$ [2, Theorem 1].

Corollary. Let the notations be as in Theorem 1 and assume that D has genus at least two and that $h = 2$. Then $J(C_1)$ is not F_q-isogenous to $J(C_2)$ and, hence, C_1 is not F_q-isomorphic to C_2.

Proof. Let $\omega \in \Omega_1$; then $\xi_k^i(\omega) = \xi_k^*\omega(\omega)$ if and only if $L(\omega_s, s) = L(\omega_s + s_2(\omega))$,

where $q^{-s_2(\omega)} = -1$ because $\omega_2^i(zu_i) \in \Omega_2^i$. So $s_2(\omega) \equiv \pi i / \log q \pmod{(2\pi i / \log q)\mathbb{Z}}$.

On the other hand $L(\omega, s)$ has period $2\pi i / \log q$, so $L(\omega, s) = L(\omega, s + s_2(\omega))$.

References