Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On a group that cannot be the group of a $ 2$-knot


Author: Kunio Murasugi
Journal: Proc. Amer. Math. Soc. 64 (1977), 154-156
MSC: Primary 55A25
DOI: https://doi.org/10.1090/S0002-9939-1977-0440530-7
MathSciNet review: 0440530
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is proved that a homomorph of the group of trefoil knot cannot be the group of a 2-knot in 4-sphere.


References [Enhancements On Off] (What's this?)

  • [1] H. S. M. Coxeter and W. O. J. Moser, Generators and relations for discrete groups, Springer-Verlag, Berlin, 1957. MR 19, 527. MR 0088489 (19:527d)
  • [2] R. H. Fox, Some problems in knot theory, Topology of 3-Manifolds and Related Topics, Prentice-Hall, Englewood Cliffs, N.J., 1962, pp. 168-176. MR 25 #3523. MR 0140100 (25:3523)
  • [3] H. Hopf, Fundamentalgruppe und zweite Bettische Gruppe, Comment. Math. Helv. 14 (1942), 257-309. MR 3, 316. MR 0006510 (3:316e)
  • [4] M. A. Kervaire, On higher dimensional knots, Differential and Combinatorial Topology, Princeton Math. Ser., No. 27, Princeton Univ. Press, Princeton, N.J., 1965. MR 31 #2732. MR 0178475 (31:2732)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 55A25

Retrieve articles in all journals with MSC: 55A25


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1977-0440530-7
Keywords: n-knot, knot group
Article copyright: © Copyright 1977 American Mathematical Society

American Mathematical Society