LOWER BOUNDS FOR THE ZEROS OF BESSEL FUNCTIONS

ROGER C. MCCANN

Abstract. Let \(j_{p,n} \) denote the \(n \)th positive zero of \(J_p, p > 0 \). Then

\[
j_{p,n} > (j^2_{0,n} + p^2)^{1/2}.
\]

We begin by considering the eigenvalue problem

\[
-(xy')' + x^{-1}y = \lambda^2 x^{2p-1}y, \quad \lambda, p > 0,
\]

\[
y(a) = y(1) = 0, \quad 0 < a < 1.
\]

For simplicity of notation we will set \(q = p^{-1} \). It is easily verified that the general solution of (1) is

\[
y(x) = C_1 J_q(\lambda q x^{1/q}) + C_2 Y_q(\lambda q x^{1/q})
\]

and that the eigenvalues are given by

\[
J_q(\lambda q) Y_q(\lambda qa^{1/q}) - J_q(\lambda qa^{1/q}) Y_q(\lambda q) = 0.
\]

If \(z_n(a, r) \) denotes the \(n \)th positive zero of \(J_r(z) Y_r(z a^{1/q}) - J_r(z a^{1/q}) Y_r(z) = 0 \), then the \(n \)th eigenvalue, \(\lambda^2_n(a) \), of (1), (2) is given by

\[
\lambda^2_n(a) = (z_n(a, q)/q)^2.
\]

Let \(j_{r,n} \) denote the \(n \)th positive zero of \(J_r \). On p. 38 of [4] it is shown that \(z_n(a, r) \to j_{r,n} \) as \(a \to 0^+ \) whenever \(r \) is a positive integer. The restriction on \(r \) is extrinsic so that

\[
\lim_{a \to 0^+} z_n(a, r) = j_{r,n}, \quad r > 0.
\]

Let \(R[p, y] \) denote the Rayleigh quotient

\[
R[p, y] = \int_a^1 (-xy')' + x^{-1}y \, dx / \int_a^1 x^{2p}y^2 \, dx.
\]

It is well known that the eigenvalues \(\{\lambda^2_n(p)\} \) of (1), (2) can be obtained from the Rayleigh quotient [5]. Let \(V \) denote the linear space of all functions in \(C^2((a, 1)) \) which satisfy the boundary conditions (2). Then

\[
\lambda^2_n(p) = \min_{y \in V, y \neq 0} R[p, y].
\]

Let \(y_1, y_2, \ldots, y_n \) be \(n \) functions in \(V \), \(A \) denote the subspace of \(V \) spanned by \(y_1, y_2, \ldots, y_n \) and \(A^\perp \) denote the orthogonal complement of \(A \) relative to \(V \). Then

Received by the editors January 5, 1976 and, in revised form, September 13, 1976.

© American Mathematical Society 1977

101
\[\lambda^2_{n+1}(p) = \max_A \min_{y \neq 0} R[p, y] \]

where the maximum is taken over all sets of \(n \) functions in \(V \).

Whenever \(p > 0 \) we have that \(x^{2p-1} < x^{-1} \) for all \(x \in (0, 1) \). Then

\[R[p, y] = \frac{\int_a^1 - (xy')'y \, dx}{\int_a^1 x^{2p-1}y^2 \, dx} + \frac{\int_a^1 x^{-1}y^2 \, dx}{\int_a^1 x^{2p-1}y^2 \, dx} > Q[p, y] + 1, \]

where

\[Q[p, y] = \frac{\int_a^1 - (xy')'y \, dx}{\int_a^1 x^{2p-1}y^2 \, dx} \]

is the Rayleigh quotient for the eigenvalue problem

\[\begin{align*}
(x^2y'' + yx')' + \mu^2 x^{2p}y &= 0, \\
y(a) &= y(b) = 0,
\end{align*} \]

Equation (6) is equivalent to

\[x^2y'' + yx' + \mu^2 x^{2p}y = 0. \]

It is easily checked that the general solution of (8) and, hence, of (6) is (recall that \(q = p^{-1} \))

\[y(x) = C_1 J_0(\mu qx^{1/q}) + C_2 Y_0(\mu qx^{1/q}) \]

and that the eigenvalues are given by

\[J_0(\mu q)Y_0(\mu qa^{1/q}) - J_0(\mu qa^{1/q})Y_0(\mu q) = 0. \]

In particular the \(n \)th eigenvalue, \(\mu_2^n(a) \), of (6), (7) is given by

\[\mu_2^n(a) = (z_n(a, 0)/q)^2. \]

From (3), (5), and (9) we obtain

\[(z_n(a, q)/q)^2 > (z_n(a, 0)/q)^2 + 1. \]

If we now replace \(q \) by \(p \), let \(a \to 0^+ \) in (10), and using (4) we find that

\[(j_{p,n}/p)^2 > (j_{0,n}/q)^2 + 1. \]

Theorem. \(j_{p,n} > ((j_{0,n})^2 + p^2)^{1/2} \) whenever \(p > 0 \).

Corollary. \(j_{p,n} > ((n - \frac{1}{4})\pi^2 + p^2)^{1/2} \) whenever \(p > 0 \).

Proof. It is known (see [9, p. 489]) that the positive zeros of \(J_0 \) lie in the intervals \((mn + \frac{3}{4} \pi, mn + \frac{5}{4} \pi) \) for \(m = 0, 1, 2, \ldots \). Hence, \(j_{0,n} > (n - 1)\pi + \frac{3}{4} \pi = (n - \frac{1}{4})\pi \). The desired result follows.

In [8] it is shown that

\[j_{p,n} = p + a_n p^{1/3} + b_n p^{-1/3} + O(p^{-1}) \quad (n = 1, 2, \ldots), \]

where \(a_n \) and \(b_n \) are independent of \(p \). Hence,

\[j_{p,n}^2 = p^2 + c_n p^{4/3} + O(p^{2/3}) \quad (n = 1, 2, \ldots), \]

where \(c_n \) is independent of \(p \). This shows that the second term of the lower
bound for $j_{p,n}$ given in the Theorem is of the wrong order. Other asymptotic expansions for $j_{p,n}$ may be found in [1], [2], and [6].

In [3] it is shown that for $0 \leq p \leq \frac{1}{2}$

\begin{equation}
\frac{p\pi}{2} + \left(n - \frac{1}{2}\right)\pi \leq j_{p,n}.
\end{equation}

For $p = 0$ the result of the Theorem is exact, while the expression in (11) has a strict inequality. Hence, our result is stronger than (11) whenever p is sufficiently small. However, when $p = \frac{1}{2}$, the result in (11) is exact. Hence, for $0 < p < \frac{1}{2}$ neither result implies the other. It should be emphasized that the Theorem is valid for all $p > 0$, while (11) is valid only for $0 < p < \frac{1}{2}$.

I would like to thank the referee for his helpful suggestions and for bringing [2], [3], and [4] to my attention.

References

Department of Mathematics, Case Western Reserve University, Cleveland, Ohio 44106