Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Extensions of totally projective groups

Authors: Ronald Linton and Charles Megibben
Journal: Proc. Amer. Math. Soc. 64 (1977), 35-38
MSC: Primary 20K10
MathSciNet review: 0450425
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is an unpublished observation of L. Fuchs and E. A. Walker that if L is a fully invariant subgroup of the totally projective p-group G, then both L and G/L are totally projective. In this note we treat the more difficult converse question.

References [Enhancements On Off] (What's this?)

  • [1] L. Fuchs, Infinite Abelian groups, Vol. II, Academic Press, New York, 1973. MR 0349869 (50:2362)
  • [2] C. K. Megibben, The generalized Kulikov criterion, Canad. J. Math. 21 (1969), 1192-1205. MR 40 #2754. MR 0249509 (40:2754)
  • [3] K. D. Wallace, $ {C_\lambda }$-groups and $ \lambda $-basic subgroups, Pacific J. Math. 43 (1972), 799-809. MR 47 #3569. MR 0315020 (47:3569)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 20K10

Retrieve articles in all journals with MSC: 20K10

Additional Information

Keywords: Totally projective group, fully invariant subgroup, $ {{\text{C}}_\lambda }$-groups
Article copyright: © Copyright 1977 American Mathematical Society

American Mathematical Society