ON THE ACCRETIVITY OF THE INVERSE OF AN ACCRETIVE RELATION

GUSTAF GRIPENBERG

Abstract. If X is a smooth, reflexive, real Banach space such that a relation A in $X \times X$ is accretive iff A^{-1} is accretive, then X is isomorphic to a Hilbert space.

Let X be a real Banach space with dual X^*. A subset $A \subset X \times X$ is said to be accretive if for all $[x_1, y_1], [x_2, y_2] \in A$, $i = 1, 2$, $(y_1 - y_2, f) \geq 0$ for some $f \in F(x_1 - x_2)$, where F is the duality map: $F(x) = \{x^* \in X^*|(x, x^*) = \|x\|^2 = \|x^*\|^2\}$. By definition $A^{-1} = \{(x, y) | [y, x] \in A\}$. It is trivial that if X is a real Hilbert space then A is accretive (or monotone) iff A^{-1} is accretive.

Theorem. Suppose X is a smooth, reflexive, real Banach space such that A is accretive in $X \times X$ iff A^{-1} is accretive in $X \times X$. Then X is isomorphic to a Hilbert space.

Proof. As X is smooth and reflexive, the duality map F is single-valued. Define $\langle x, y \rangle = \langle x, F(y) \rangle$, $x, y \in X$. It follows from the assumption that $\langle x, y \rangle \geq 0$ iff $\langle y, x \rangle \geq 0$, and so also that

\[\langle x, y \rangle = 0 \iff \langle y, x \rangle = 0 \quad \forall x, y \in X. \]

For any closed subspace M of X define

\[M^\perp = \{ x \in X | \langle x, y \rangle = 0 \ \forall y \in M \}. \]

By (1) it is seen that M is a closed subspace of X. If $x \in M \cap M^\perp$ then $\|x\|^2 = \langle x, x \rangle = 0$, i.e., $x = 0$; and so

\[M \cap M^\perp = \{0\}. \]

Let $z \in X$ be arbitrary. Let x_1 be an element in M that minimizes the norm $\|z - x\|$, $x \in M$ (x_1 exists because M is closed and convex and X is reflexive). This implies that $\|z - x_1\| \leq \|z - x_1 + y\| \forall y \in M$. Lemma 1.1 in [1] now yields $\langle y, z - x_1 \rangle = 0 \forall y \in M$, and so $z - x_1 \in M^\perp$. It follows that

\[X = M + M^\perp, \]

which together with (3) and the fact that M^\perp is a closed subspace shows that M has a topological complement. As M was an arbitrary closed subspace of X, Theorem 1 in [2] implies that X is isomorphic to a Hilbert space.
REFERENCES

Institute of Mathematics, Helsinki University of Technology, SF-02150 Espoo 15, Finland