Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Rota's theorem for general functional Hilbert spaces


Author: Joseph A. Ball
Journal: Proc. Amer. Math. Soc. 64 (1977), 55-61
MSC: Primary 47A45; Secondary 47A25
DOI: https://doi.org/10.1090/S0002-9939-1977-0461176-0
MathSciNet review: 0461176
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: By a theorem of G.-C. Rota, every (linear) operator T on a Hilbert space with spectral radius less than one is similar to the adjoint of the unilateral shift S of infinite multiplicity restricted to an invariant subspace. This theorem is shown to be true in a rather general context, where S is multiplication by z on a Hilbert space of functions analytic on an open subset D of the complex plane, and T is an operator with spectrum contained in D. A several-variable version for an N-tuple of commuting operators with a corollary concerning complete spectral sets is also presented.


References [Enhancements On Off] (What's this?)

  • [1] M.B. Abrahamse and R.G. Douglas, A class of subnormal operators related to multiply-connected domains, Advances in Math. 19 (1976), 1-43. MR 0397468 (53:1327)
  • [2] W. B. Arveson, Subalgebras of $ {C^ \ast }$-algebras. II, Acta Math. 128 (1972), 271-308. MR 0394232 (52:15035)
  • [3] C.A. Berger and B.I. Shaw, Intertwining, analytic structure, and the trace norm estimate, Proc. Conf. on Operator Theory (Dalhousie Univ., Halifax, N.S., 1973), edited by P.A. Fillmore, Lecture Notes in Math., vol. 345, Springer-Verlag, Berlin and New York, 1973, pp. 1-12. MR 50#14327. MR 0361885 (50:14327)
  • [4] S. Bergman, The kernel function and conformal mapping, Math. Surveys, no. 5, Amer. Math. Soc., Providence, R.I., 1950. MR 12, 402. MR 0038439 (12:402a)
  • [5] J. Bram, Subnormal operators, Duke Math. J. 22 (1955), 75-94. MR 16, 835. MR 0068129 (16:835a)
  • [6] J.E. Brennan, Invariant subspaces and rational approximation, J. Functional Analysis 7 (1971), 285-310. MR 0423059 (54:11042)
  • [7] D.N. Clark, On commuting contractions, J. Math. Anal. Appl. 32 (1970), 590-596. MR 42 #2309. MR 0267407 (42:2309)
  • [8] R.G.Douglas and C.Pearcy, Invariant subspaces of non-quasitriangular operators, Proc. Conf. on Operator Theory (Dalhousie Univ., Halifax, N.S., 1973), edited by P.A. Fillmore, Lecture Notes in Math., vol. 345, Springer-Verlag, Berlin and New York, 1973, pp. 13-57. MR 50 #10857. MR 0358391 (50:10857)
  • [9] N. Dunford and J.T. Schwartz, Linear operators. I, General theory, Interscience, New York, 1958. MR 22#8302. MR 0117523 (22:8302)
  • [10] D.N. Herrero, A Rota universal model for operators with mulitply connected spectrum, Rev. Roumaine Math. Pures Appl. 21 (1976), 15-23. MR 0407628 (53:11400)
  • [11] G.-C. Rota, On models for linear operators, Comm. Pure Appl. Math. 13 (1960), 469-472. MR 22#2898. MR 0112040 (22:2898)
  • [12] D.E. Sarason, The $ {H^p}$ spaces of an annulus, Mem. Amer. Math. Soc. No. 55 (1965). MR 32#6256. MR 0188824 (32:6256)
  • [13] A.L. Shields, Weighted shift operators and analytic function theory, Topics in Operator Theory, Math. Surveys, vol. 13, Amer. Math. Soc., Providence, R.I., 1974. MR 50#14341. MR 0361899 (50:14341)
  • [14] D. Voiculescu, Norm-limits of algebraic operators, Rev. Roumaine Math. Pures Appl. 19 (1974), 371-378. MR 49 #7826. MR 0343082 (49:7826)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47A45, 47A25

Retrieve articles in all journals with MSC: 47A45, 47A25


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1977-0461176-0
Keywords: Reproducing kernel function, Riesz-Dunford functional calculus, similarity, complete spectral set and normal dilation
Article copyright: © Copyright 1977 American Mathematical Society

American Mathematical Society