Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Convex solutions of a Schröder equation in several variables


Author: Fred M. Hoppe
Journal: Proc. Amer. Math. Soc. 64 (1977), 326-330
MSC: Primary 60J80
DOI: https://doi.org/10.1090/S0002-9939-1977-0443113-8
MathSciNet review: 0443113
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A nonprobabilistic proof is given for the existence of the Yaglom conditional limit distribution for the subcritical multitype Galton-Watson process by using a uniqueness theorem for convex solutions of the multidimensional Schröder functional equation.


References [Enhancements On Off] (What's this?)

  • [1] R. Bojanic and E. Seneta (1971), Slowly varying functions and asymptotic relations, J. Math. Anal. Appl. 34, 302-315. MR 0274676 (43:438)
  • [2] C. R. Heathcote, E. Seneta and Vere-Jones (1967), A refinement of two theorems in the theory of branching processes, Theor. Probability Appl. 12, 297-301. MR 0217889 (36:978)
  • [3] F. M. Hoppe (1975a), Stationary measures for multitype branching processes, J. Appl. Probability 12, 219-227. MR 0373043 (51:9245)
  • [4] -(1975b), Functional equations with applications to multitype Gallon-Watson branching processes, Doctoral Dissertation, Princeton Univ., Princeton, N.J.
  • [5] -(1977), Representations of invariant measures on multitype Galton-Watson processes, Ann. Probability 5, 291-297. MR 0431405 (55:4405)
  • [6] -(1977), The critical Bienaymé-Galton-Watson process, Stochastic Processes Appl. 5, 57-66. MR 0426185 (54:14131)
  • [7] A. Joffe and F. Spitzer (1967), On multitype branching processes with $ \rho \leqslant 1$, J. Math. Anal. Appl. 19, 409-430. MR 0212895 (35:3760)
  • [8] M. Kuczma (1964), Note on Schröder's functional equation, J. Austral. Math. Soc. 4, 149-151. MR 0165266 (29:2555)
  • [9] E. Seneta (1969), Functional equations and the Galton-Watson process, Advances in Appl. Probability 1, 1-42. MR 0248917 (40:2167)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 60J80

Retrieve articles in all journals with MSC: 60J80


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1977-0443113-8
Keywords: Subcritical multitype Galton-Watson process, Yaglom limit, Schröder equation, convexity
Article copyright: © Copyright 1977 American Mathematical Society

American Mathematical Society