Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



The domain covered by a typically-real function

Author: A. W. Goodman
Journal: Proc. Amer. Math. Soc. 64 (1977), 233-237
MSC: Primary 30A76
MathSciNet review: 0444956
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We find the largest possible domain that is covered by $ f(E)$ for every typically-real function $ f(z)$. In the process we obtain a set of universal typically-real functions.

References [Enhancements On Off] (What's this?)

  • [1] D. A. Brannan and W. E. Kirwan, A covering theorem for typically real functions, Glasgow Math. J. 10 (1969), 153-155. MR 40#7431. MR 0254222 (40:7431)
  • [2] A. W. Goodman and E. B. Saff, On univalent functions convex in one direction (to appear). MR 516461 (80e:30006)
  • [3] M. T. McGregor, On three classes of univalent functions with real coefficients, J. London Math. Soc. 39 (1964), 43-50. MR 0162931 (29:235)
  • [4] M. S. Robertson, On the coefficients of a typically-real function, Bull. Amer. Math. Soc. 41 (1935), 565-572. MR 1563142
  • [5] W. Rogosinski, Über positive harmonische Entwicklungen und typisch-reele Potenzreihen, Math Z. 35 (1932), 93-121. MR 1545292

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 30A76

Retrieve articles in all journals with MSC: 30A76

Additional Information

Article copyright: © Copyright 1977 American Mathematical Society

American Mathematical Society