Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Isoperimetric inequalities involving heat flow under linear radiation conditions

Author: Andrew Acker
Journal: Proc. Amer. Math. Soc. 64 (1977), 265-271
MSC: Primary 35J99; Secondary 49H05
MathSciNet review: 0445122
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Under the assumption that a constant linear radiation condition holds on each boundary component, we show that the annulus and the strip are heat-flow minimizing with respect to area-preserving variations in one (for the annulus: the outer) boundary component.

References [Enhancements On Off] (What's this?)

  • [1] A. Acker, Heat flow inequalities with applications to heat flow optimization problems, SIAM J. Math. Anal. (to appear). MR 0473960 (57:13618)
  • [2] T. Carleman, Über ein Minimalproblem der mathematischen Physik, Math. Z. 1 (1918), 208-212. MR 1544292
  • [3] G. M. Golusin, Geometrische Functiontheorie, VEB Deutscher Verlag, Berlin, 1957. MR 0089896 (19:735e)
  • [4] J. Horn, Partielle Differentialgleichungen, de Gruyter, Berlin, 1949. MR 0037983 (12:336g)
  • [5] N. I. Mushelišvili, Singular integral equations, Noordhoff, Groningen, 1953.
  • [6] W. Pogorzelski, Integral equations and their applications, Vol. I, PWN, Warsaw, 1966. MR 0201934 (34:1811)
  • [7] G. Szegö, Über einige Extremalaufgaben der Potentialtheorie, Math. Z. 31 (1930), 583-593. MR 1545137

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 35J99, 49H05

Retrieve articles in all journals with MSC: 35J99, 49H05

Additional Information

Article copyright: © Copyright 1977 American Mathematical Society

American Mathematical Society