Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A class of two-bridge knots with property-$ P$


Author: E. J. Mayland
Journal: Proc. Amer. Math. Soc. 64 (1977), 365-369
MSC: Primary 55A25
DOI: https://doi.org/10.1090/S0002-9939-1977-0448335-8
MathSciNet review: 0448335
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A knot k has property-P provided no simply connected manifold results from performing a nontrivial elementary surgery along k. We establish property-P for certain families of two-bridge knots generalizing twist knots (Whitehead doubles of the trivial knot).


References [Enhancements On Off] (What's this?)

  • [1] R. H. Bing and J. M. Martin, Cubes with knotted holes, Trans. Amer. Math. Soc. 155 (1971), 217-231. MR 43 #4018a. MR 0278287 (43:4018a)
  • [2] F. González-Acuña, Dehn's construction on knots, Bol. Soc. Mat. Mexicana (2) 15 (1970), 58-79. MR 50 #8495. MR 0356022 (50:8495)
  • [3] M. E. Hamstrom and R. P. Jerrard, Collapsing a triangulation of a ``knotted'' cell, Proc. Amer. Math. Soc. 21 (1969), 327-331. MR 39 #4831. MR 0243510 (39:4831)
  • [4] John Hempel, A simply connected 3-manifold is $ {S^3}$ if it is the sum of a solid torus and the complement of a torus knot, Proc. Amer. Math. Soc. 15 (1964), 154-158. MR 28 #599. MR 0157365 (28:599)
  • [5] R. Lyndon, On Dehn's algorithm, Math. Ann. 166 (1966), 208-228. MR 35 #5499. MR 0214650 (35:5499)
  • [6] K. Murasugi, Remarks on knots with two bridges, Proc. Japan Acad. 37 (1961), 294-297. MR 25 #2599. MR 0139162 (25:2599)
  • [7] J. P. Neuzil, Surgery on a curve in a solid torus, Trans. Amer. Math. Soc. 204 (1975), 385-406. MR 51 #4212. MR 0367970 (51:4212)
  • [8] R. Riley, Parabolic representations of knot groups. I, Proc. London Math. Soc. (3) 24 (1972), 217-242. MR 45 #9313. MR 0300267 (45:9313)
  • [9] -, Knots with parabolic property-P, Quart. J. Math. (2) 25 (1974), 273-283. MR 0358758 (50:11217)
  • [10] H. Schubert, Knoten mit zwei Brücken, Math. Z. 65 (1956), 133-170. MR 18, 498. MR 0082104 (18:498e)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 55A25

Retrieve articles in all journals with MSC: 55A25


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1977-0448335-8
Keywords: Fundamental group, 3-manifold, knots, property-P
Article copyright: © Copyright 1977 American Mathematical Society

American Mathematical Society