THIRD ORDER LINEAR DIFFERENTIAL EQUATIONS WITH PERIODIC COEFFICIENTS

L. H. ERBE

Abstract. The third order linear differential equation $Ly = y''' + p_2(t)y'' + p_1(t)y' + p_0(t)y = 0$ is studied, where $p_i(t)$ are continuous real-valued and periodic of period $\omega > 0$. Various criteria are obtained which guarantee "partial" asymptotic stability or instability by means of effective bounds on the Floquet characteristic multipliers of $Ly = 0$.

1. Introduction. Consider the third order differential equation

$Ly = y''' + p_2(t)y'' + p_1(t)y' + p_0(t)y = 0$

where the $p_i(t)$ are continuous on $(-\infty, +\infty)$ and periodic of period $\omega > 0$. The stability properties of (1.1) are determined by the characteristic multipliers; i.e., by the roots of the Floquet characteristic equation

$\lambda^3 - A_2\lambda^2 + A_1\lambda - B = 0$

where A_1, A_2 are given in terms of the fundamental system of solutions of (1)

y_0, y_1, y_2, with $y_i^{(j)}(0) = \delta_{ij}, 0 < i, j < 2$, as follows:

$A_2 = y_0(\omega) + y_1(\omega) + y_2(\omega),$

$A_1 = \begin{vmatrix} y_0(\omega) & y_1(\omega) & y_2(\omega) \\ y_0(\omega) & y_1(\omega) & y_2(\omega) \\ y_0(\omega) & y_1(\omega) & y_2(\omega) \end{vmatrix} + \begin{vmatrix} y_0(\omega) & y_1(\omega) & y_2(\omega) \\ y_0(\omega) & y_1(\omega) & y_2(\omega) \\ y_0(\omega) & y_1(\omega) & y_2(\omega) \end{vmatrix} + \begin{vmatrix} y_0(\omega) & y_1(\omega) & y_2(\omega) \\ y_0(\omega) & y_1(\omega) & y_2(\omega) \\ y_0(\omega) & y_1(\omega) & y_2(\omega) \end{vmatrix},$

and $B = e^{-\omega}, J = (1/\omega)\int_0^\omega p_2(t) dt$. In [12] stability of (1.1) is related to certain periodic and multi-point de la Valée Poussin type boundary value problems and various necessary and/or sufficient conditions are obtained for stability and instability of (1.1). These problems were also considered in [2] via the method of lower and upper solutions for the corresponding second order Riccati equation

$u'' + f(t, u, u') = 0, \quad u = y'/y,$

where

$f(t, u, u') = 3uu' + p_2u' + u^3 + p_2u^2 + p_1u + p_0.$

In this paper we shall be interested in obtaining lower and/or upper bounds on some or all of the characteristic multipliers which will be denoted

Received by the editors October 6, 1976.

AMS (MOS) subject classifications (1970). Primary 34C10, 34C25, 34D05, 34D35.

Key words and phrases. Periodic solution, Floquet theory, characteristic multipliers, disconjugacy, oscillation.

1Research supported in part by NRC Grant A-7673.

© American Mathematical Society 1977

241
by $\lambda_1, \lambda_2, \lambda_3$. Since $B = \lambda_1\lambda_2\lambda_3$ it is clear that a necessary condition for asymptotic stability (i.e., $|\lambda_i| < 1$, $i = 1, 2, 3$) is that $J > 0$. We shall be interested in finding sufficient conditions for "partial" asymptotic stability or instability. That is, we obtain conditions under which the asymptotically stable, stable, and unstable manifolds, denoted by \mathcal{S}, \mathcal{S}, and \mathcal{T}, respectively (i.e., the subspace of the solution space of (1.1) corresponding to characteristic multipliers of modulus $|\lambda| < 1$, $|\lambda| = 1$, $|\lambda| > 1$), have dimension k, $0 < k < 3$. We set $d_u = \dim \mathcal{S}$, $d_s = \dim \mathcal{S}$, and $d_u = \dim \mathcal{T}$. A solution of (1.1) will be said to be oscillatory if it has infinitely many zeros in a neighborhood of $+\infty$. The set of all oscillatory solutions will be denoted by \mathcal{O}. The set of all solutions of (1.1) which never vanish on $(-\infty, +\infty)$ will be denoted by \mathcal{R}.

If for each $0 < t < \omega$ the characteristic polynomial of (1.1),

$$
\sigma(t, \rho) = \rho^3 + p_2(t)\rho^2 + p_1(t)\rho + p_0(t),
$$

has real roots $\rho_i(t)$, $i = 1, 2, 3$, which are separated by constants (i.e., $\rho_i(t) < \mu_1 < \rho_2(t) < \mu_2 < \rho_3(t)$, $0 < t < \omega$), then (1.1) is disconjugate on $(-\infty, +\infty)$; that is, no nontrivial solution of (1.1) has more than two zeros on $(-\infty, +\infty)$. (See e.g., [1].) In this case, μ_1 and μ_2 are lower and upper solutions, respectively, of the Riccati equation (1.3) and the stability properties of (1.1) may be related to the sign of μ_1, μ_2 ([2]). We are interested here in obtaining criteria for the case when (1.1) has (perhaps) oscillatory solutions.

Consider the sets S_i, T_i, $i = 1, 2$, defined by

$$
S_1 = \{\rho: \sigma(t, \mu) < 0 \text{ for all } \mu < \rho, t \in [0, \omega]\},
$$

$$
S_2 = \{\rho: \sigma(t, \rho) < 0, t \in [0, \omega]\},
$$

$$
T_1 = \{\rho: \sigma(t, \mu) > 0 \text{ for all } \mu > \rho, t \in [0, \omega]\},
$$

$$
T_2 = \{\rho: \sigma(t, \rho) > 0, t \in [0, \omega]\}.
$$

Let $\alpha_i = \sup S_i$, $\beta_i = \inf T_i$, $i = 1, 2$. Thus, $S_1 \subseteq S_2$, $T_1 \supseteq T_2$ and $\alpha_1 < \alpha_2$, $\beta_2 < \beta_1$ and $\sigma(t, \alpha_i) < 0 < \sigma(t, \beta_i)$, $i = 1, 2$. We shall see below that the stability properties of (1.1) can be related to the sets S_i, T_i, and that it is often possible to obtain effective lower bounds on α_i, α_2 and upper bounds on β_1, β_2 in terms of the coefficients $p_i(t)$. The main results are in §2 below and in §3 we briefly discuss their applicability.

2. We begin this section with a result which yields upper and lower bounds on the set of positive characteristic multipliers of (1.1). Since the coefficients in equation (1.2) are all real and $B = \lambda_1\lambda_2\lambda_3 > 0$, there always exists at least one positive characteristic multiplier.

Theorem 2.1. Let α_1, β_1 be defined as above (i.e., $\alpha_1 = \sup S_1$, $\beta_1 = \inf T_1$) and assume that for each fixed $\rho \in S_1 \cup T_1$, $\sigma(t, \rho) \equiv 0$, for $t \in [0, \omega]$. Assume further that for each $0 < \tau < \omega$ equation (1.1) is disconjugate on $[\tau, \tau + \omega]$. Then any positive characteristic multiplier λ of (1.1) satisfies
\(e^{\alpha \omega} < \lambda < e^{\beta \omega}, \)

and the corresponding solution \(y_\lambda \) of (1.1) belongs to \(\mathcal{R} \).

Proof. From Floquet theory, if \(\lambda > 0 \) is a multiplier of (1.1), then the corresponding solution of (1.1) may be written \(y_\lambda(t) = \phi(t)e^{\rho t} \), where \(\rho = \ln \lambda/\omega, \phi(t+\omega) = \phi(t) \) for all \(t \), and \(\phi(t) > 0 \) on \([0, \omega]\) by disconjugacy. Thus, \(y_\lambda \in \mathcal{R} \). To prove (2.1) (i.e., \(\alpha_1 < \rho < \beta_1 \)), suppose first that \(\rho > \beta_1 \). Then with \(z(t) = e^{\rho t} \) we find that \(Lz(t) = e^{\rho t} \sigma(t, \rho) > 0 \). Let

\[
 k = \min_{0 < t < \omega} \phi(t) = \phi(t_0)
\]

and let \(v(t) = y_\lambda(t) - k z(t) \). Thus, \(v(t) > 0 \) on \([t_0, t_0 + \omega]\) and \(v(t) = v'(t_0) = v(t_0 + \omega) = v'(t_0 + \omega) = 0 \). Since \(Ly = 0 \) is disconjugate on \([t_0, t_0 + \omega]\), the Green’s function \(G_{21}(t, s) \) for the boundary value problem

\[
 L y = f, \quad y(t_0) = y'(t_0) = y(t_0 + \omega) = 0
\]

exists and is nonnegative for \(t, s \in [t_0, t_0 + \omega] \). Furthermore, the solution of (2.2) may be written as

\[
 y(t) = \int_{t_0}^{t_0 + \omega} G_{21}(t, s)f(s) \, ds.
\]

Since \(Lv(t) = -k e^{\rho t} \sigma(t, \rho) = f(t) < 0 \) on \([t_0, t_0 + \omega]\), we have

\[
 v(t) = \int_{t_0}^{t_0 + \omega} G_{21}(t, s)f(s) \, ds < 0
\]

which implies \(v(t) \equiv 0 \), i.e., \(\sigma(t, \rho) \equiv 0 \), a contradiction to our assumption. Therefore, \(\rho < \beta_1 \). Similarly, with

\[
 v_1(t) = k_1 z(t) - y(t), \quad k_1 = \max_{0 < t < \omega} \phi(t) = \phi(t_1),
\]

we may show that \(\rho > \alpha_1 \). This completes the proof.

As an immediate consequence of Theorem 2.1, we have

Corollary 2.2. In addition to the hypotheses of Theorem 2.1 assume \(\beta_1 < 0 \) \((\alpha_1 > 0)\). Then any positive characteristic multiplier \(\lambda \) of (1.1) satisfies \(\lambda < 1 \), and \(\sigma_* > 1 \), \(\mathcal{R} \cap \mathcal{S} \neq \emptyset \) \((\lambda > 1, \sigma_* > 1 \text{ and } \mathcal{R} \cap \mathcal{S} \neq \emptyset)\).

We now begin a more detailed analysis of \(\mathcal{R} \), \(\mathcal{S} \), and \(\mathcal{H} \). It is convenient to consider three cases: (i) \(J > 0 \), (ii) \(J = 0 \), (iii) \(J < 0 \). Since \(B = e^{-\omega J} = \lambda_1 \lambda_2 \lambda_3 \), it follows that \(d = 3 \) (i.e., asymptotic stability) occurs only in case (i), \(d = 3 \) (stability) occurs only in case (ii), and \(d > 1 \) (instability) always occurs in case (iii). Our primary concern is to obtain criteria under which \(d, d_2, d_* \) take on various values of \(k, 0 < k < 3 \). In what follows, we will occasionally assume that the following condition holds (see also [12]):

Condition A. We say that equation (1.1) satisfies Condition A in case for any \(0 < \tau < \omega \) the boundary value problem

\[
 Ly = 0, \quad y(\tau) = y(\tau + \omega) = y(\tau + 2\omega) = 0
\]

has a Green’s function.
Clearly, Condition A will hold if, for example, equation (1.1) is disconjugate on \([\tau, \tau + 2\omega]\) for all \(0 < \tau < \omega\). However, because of the particular properties of the three-point problem Condition A may also hold even though solutions of (1.1) exist with three zeros on \([\tau, \tau + 2\omega]\). Sufficient conditions for A to hold may be found in [12].

We begin with Case (i), \(J > 0\):

Theorem 2.3. Let \(J > 0\) and assume (1.1) is disconjugate on \([\tau, \tau + \omega]\) for all \(0 < \tau < \omega\).

(a) If \(-J < \alpha_1 < \beta_1 < 0\) (i.e., \((-\infty, -J) \subseteq S_1, [0, +\infty) \subseteq T_1\)) and if for each \(\rho \in (-\infty, -J) \cup [0, +\infty), \sigma(t, \rho) \equiv 0\) on \([0, \omega]\), then \(d_a > 2, d_s = 0, \text{ and } \emptyset \cap \mathcal{R} \neq \emptyset\). Further, if Condition A holds, then \(d_a = 3\).

(b) If \([-J, 0] \subseteq S_2 \cup T_2\) and \(\sigma(t, \rho) \equiv 0\) on \([0, \omega]\) for each \(\rho \in [-J, 0]\), then \(d_a > 1, d_a = 1, d_s = 0, \text{ and } \emptyset \cap \mathcal{R} \neq \emptyset\).

(c) If Condition A holds, if \((-\infty, 0] \subseteq S_1, [-J, +\infty) \subseteq T_1\) and \(\sigma(t, \rho) \equiv 0\) on \([0, \omega]\) for \(\rho < 0\) (\(\rho > -J\)), \(A_2 X_3 = B/X_1 < 1\) so that one of \(A, X_2, X_3\) satisfies \(|A, X_2, X_3| < 1\). To be specific, assume \(|A, X_2, X_3| < 1\). Thus, \(d_a > 2\) and \(d_s = 0\) since complex multipliers occur only in conjugate pairs. This proves the first part of (a). Now if Condition A holds, then there are no negative multipliers. For if \(\lambda < 0\) is a multiplier, then there exists a solution \(y(t) \equiv 0\) of (1.1) with \(y(t + \omega) = \lambda y(t)\) and hence \(y(\tau) = 0\) for some \(0 < \tau < \omega\). Thus, \(y(\tau) = y(\tau + \omega) = y(\tau + 2\omega) = 0\), a contradiction. We conclude, therefore, that either all multipliers are real and satisfy \(B < \lambda < 1\), \(i = 1, 2, 3\), or \(\lambda_2, \lambda_3\) are complex with \(|\lambda_2| = |\lambda_3| < 1\), and in either case \(d_a = 3\).

(b) If \([-J, 0] \subseteq S_2 \cup T_2\), then since \(\sigma(t, \rho) \equiv 0\) for \(\rho \in [-J, 0]\), it follows that \(S_2 \cap T_2 = \emptyset\) so that \([-J, 0] \subseteq S_2\) or \([-J, 0] \subseteq T_2\). To be specific, assume \([-J, 0] \subseteq S_2\). If there exists a multiplier \(\lambda \in [B, 1]\), then by Floquet theory \(y_{\lambda}(t) = (\phi(t)) e^{\rho t}, \rho = \ln \lambda/\omega \in [-J, 0]\), and as in Theorem 2.1 \(\phi(t) > 0\) on \([0, \omega]\) with \(k = \max_{0 < t < \omega} \phi(t) = \phi(t_0)\) and \(v(t) = ke^{\rho t}, y_{\lambda}(t) > 0\) on \([0, \omega]\) we have \(L v(t) = k \sigma(t), \rho < 0\) and thus, as in Theorem 2.1, \(v(t) \equiv 0 \Rightarrow \sigma(t, \rho) \equiv 0\), a contradiction. If \([-J, 0] \subseteq T_2\), then we use \(v(t) = y_{\lambda}(t) - k_1 e^{\rho t}\), where \(k_1 = \min_{0 < t < \omega} \phi(t) = \phi(t_1)\), and \(L_3 v(t) = -k_1 \sigma(t, \rho) < 0 \Rightarrow v(t) \equiv 0\), a contradiction. It follows that no real multipliers \(\lambda\) satisfy \(B < \lambda < 1\). Therefore, \(0 < \lambda_1 < B\) or \(\lambda_1 > 1\) so that \(B/\lambda_1 = \lambda_2 \lambda_3 > 1\) or \(l < 1\). Thus, \(d_a > 1, d_a > 1, \text{ and } d_s = 0\).

(c) If \((-\infty, 0] \subseteq S_1\), then this implies that there are no positive multipliers.
THIRD ORDER LINEAR DIFFERENTIAL EQUATIONS

\[\lambda_1 > 1 > B \text{ so that } 0 < \lambda_2 \lambda_3 < 1 \text{ and therefore } \lambda_2, \lambda_3 \text{ must be complex with } |\lambda_2| = |\lambda_3| < 1. \]

Thus, the corresponding solutions are oscillatory. Similarly, if \([-J, +\infty) \subseteq T_1\), there are no positive multipliers \(B \text{ so that } 0 < \lambda_1 < 1 \) and hence \(\lambda_2 \lambda_3 > 1 \). Thus, \(\lambda_2, \lambda_3 \) are complex. This completes the proof.

A similar result may be obtained in the case \(J = 0 \).

Theorem 2.4. Let \(J = 0 \) and assume (1.1) is disconjugate on \([\tau, \tau + \omega]\) for all \(0 < \tau < \omega \).

(a) If \([0, +\infty) \subseteq T_1 \), \(\sigma(t, \rho) \equiv 0 \) for each \(\rho \in [0, +\infty) \), and if Condition A holds, then \(d_u = 2, d_a = 1 \), \(\mathcal{U} \) has a basis of solutions \(u_1, u_2 \in \Theta \) and \(\Theta \cap \mathcal{U} \neq \emptyset \).

(b) If \((-\infty, 0] \subseteq S_1 \), \(\sigma(t, \rho) \equiv 0 \) for each \(\rho \in (-\infty, 0] \), and if Condition A holds, then \(d_u = 1, d_a = 2 \), \(\Theta \) has a basis of solutions \(y_1, y_2 \in \Theta \) and \(\Theta \cap \mathcal{U} \neq \emptyset \).

(c) If \(\sigma(t, 0) = p_0(t) \equiv 0 \) and \(0 \in S_2 \) or \(0 \in T_2 \), then \(d_u > 1, d_a > 1 \), and \(d_d = 0 \).

Proof. (a) If \([0, +\infty) \subseteq T_1 \), Theorem 2.1 implies \(1 < \lambda_1 < B = \lambda_1 \lambda_2 \lambda_3 \). Hence, \(\lambda_2 \lambda_3 > 1 \). Condition A implies that there are no negative multipliers and since there are no real multipliers \(\geq 1 \), it follows that \(\lambda_2, \lambda_3 \) are complex with \(|\lambda_2| = |\lambda_3| > 1 \), and the corresponding solutions of (1.1) are oscillatory.

(b) If \((-\infty, 0] \subseteq S \), then by Theorem 2.1, \(1 < \lambda_1 \) so that \(\lambda_2, \lambda_3 \) are complex with \(|\lambda_2| = |\lambda_3| < 1 \).

(c) The hypotheses imply, as in Theorem 2.3(b), that there are no real multipliers \(\lambda = 1 \). Hence, \(1 < \lambda_1 \Rightarrow \lambda_2 \lambda_3 < 1 \Rightarrow |\lambda_2| < 1 \) or \(0 < \lambda_1 < 1 \Rightarrow |\lambda_3| > 1 \). Therefore, \(d_u > 1, d_a > 1, \) and \(d_d = 0 \).

For the case \(J < 0 \) for which \(d_d > 1 \) always holds, we have the following result which gives criteria under which \(d_u > 2, d_d = 3 \), or \(d_d > 1 \). This result is analogous to Theorem 2.3.

Theorem 2.5. Let \(J < 0 \) and assume (1.1) is disconjugate on \([\tau, \tau + \omega]\) for all \(0 < \tau < \omega \).

(a) If \((-\infty, 0] \subseteq S_1 \), \([-J, +\infty) \subseteq T_1 \) (i.e., \(0 < \alpha_1 < \beta_1 < -J \)) and if for each \(\rho \in (-\infty, 0] \cup [-J, +\infty) \), \(\sigma(t, \rho) \equiv 0 \) on \([0, \omega]\), then \(d_u > 2, d_a = 0, \) and \(\mathcal{U} \cap \mathcal{N} \neq \emptyset \). Further, if Condition A holds, then \(d_u = 3 \).

(b) If \([0, -J] \subseteq S_2 \cup T_2 \) and \(\sigma(t, \rho) \equiv 0 \) on \([0, \omega]\) for each \(\rho \in [0, -J] \), then \(d_u > 1, d_d > 1, d_d = 0 \) and \(\mathcal{U} \cap \mathcal{N} \neq \emptyset \).

(c) If Condition A holds, if \((-\infty, -J) \subseteq S_1 \) \(([0, +\infty) \subseteq T_1) \) and \(\sigma(t, \rho) \equiv 0 \) for \(\rho < -J \) \((\rho > 0) \), then \(d_u = 1, d_u = 2 \), \(\mathcal{U} = \langle u_1 \rangle, u_1 \in \mathcal{N}, \) \(\Theta = \langle u_2, u_3 \rangle, u_2, u_3 \in \Theta \) \((d_u = 2, d_u = 1, \mathcal{U} = \langle u_1, u_2 \rangle, u_1, u_2 \in \Theta, \mathcal{N} = \langle u_3 \rangle, u_3 \in \mathcal{N}) \).

Proof. (a) Theorem 2.1 implies \(1 < \lambda_1 < B \) and \(\mathcal{U} \cap \mathcal{N} \neq \emptyset \). Hence one of the remaining two multipliers, say \(\lambda_2 \), satisfies \(|\lambda_2| > 1 \). If Condition A holds, then there are no negative multipliers and therefore no real multipliers.
This implies $|\lambda_i| > 1$, $i = 1, 2, 3$, so that $d_u = 3$.

(b) If $[0, -J] \subseteq S_2$ (or $\subseteq T_2$), then as in Theorem 2.3(b), no real multiplier satisfies $1 < \lambda < B$. Therefore, either $0 < \lambda_1 < 1$ or $\lambda_1 > B$ and in either case we have $d_u > 1$, $d_s > 1$, $d_s = 0$, and $\mathcal{R} \neq \emptyset$.

(c) The proof is very similar to the proof of part (c) of Theorem 3.

In general, one cannot expect that $\beta_2 < \alpha_2$ holds, for the simple reason that this is sufficient to imply that $L_y = 0$ is disconjugate on $(-\infty, +\infty)$ and consequently all multipliers are real and positive. (Disconjugacy of $L_y = 0$ follows since β_2, α_2 are lower and upper solutions, respectively, for the Riccati equation (1.3); see [5], [3].) Thus, for example, $\alpha_1 < \beta_2 < \alpha_2 < \beta_1 < 0$ implies that $L_y = 0$ is disconjugate and hence there are no complex or negative multipliers; furthermore, no real multipliers are > 1 if $\sigma(t, \rho) \equiv 0$ for $\rho > 0$. This means $L_y = 0$ is asymptotically stable ($d_u = 3$) and, therefore, $J > 0$. Similarly $0 < \alpha_1 < \beta_1 < \alpha_2 < \beta_1$ and $\sigma(t, \rho) \equiv 0$ for $\rho < 0$ implies $d_u = 3$ and $J < 0$. Conditions which are sufficient to guarantee $d_s = 3$ for the case $J = 0$ are, in general, such that a small perturbation of the coefficients $p_i(t)$ leads to instability (i.e., the stability problem is not well-posed; see [10]). The next result yields conditions under which $d_u = d_s = d_v = 1$ in the case $J = 0$.

Theorem 2.6. Let $J = 0$ and assume $p_2(t), p_0(t)$ are odd and $p_1(t)$ is even. Assume further that $\beta_2 < \alpha_2$. Then $0 < \lambda_2 < 1 = \lambda_1 < \lambda_3$ (i.e., $d_s = d_u = 1$), and (1.1) is disconjugate on $(-\infty, +\infty)$.

Proof. The remarks preceding the theorem imply disconjugacy of (1.1) on $(-\infty, +\infty)$ and hence that all multipliers are real and positive. It suffices, therefore, to show $\lambda_1 = 1$. But this is immediate since by the hypotheses, equation (1.1) is not changed by the transformation $t \rightarrow -t$ and therefore the coefficients A_1, A_2 in equation (1.2) satisfy $A_1 = A_2$. Since $B = 1$, it follows that $\lambda_1 = 1$ is a root of (1.2).

As our final result in this section, we have the following theorem which yields $d_u > 1$ with the assumption $p_2(t) \equiv 0$, by an appeal to a result on asymptotic behavior of nonoscillatory solutions for the case when oscillatory solutions exist. (See [6].)

Theorem 2.7. Assume $p_0(t) > 0, p_1(t) \leq 0, p_2(t) \equiv 0$, and that (1.1) is disconjugate on $[\tau, \tau + \omega]$ for all $0 < \tau < \omega$. Suppose also that (1.1) has a (nontrivial) solution $u \in \mathcal{D}$. Then

(a) any positive characteristic multiplier satisfies $0 < \lambda < 1$; $d_u > 1$, $d_v > 1$ and (1.1) has three linearly independent solutions y_1, y_2, y_3 with $y_1 \in \mathcal{D} \cap \mathcal{R}, y_2, y_3 \in \mathcal{D}$;

(b) if, in addition, Condition A holds, then $d_u = 1$, $d_v = 2$ and $y_2, y_3 \in \mathcal{R} \cap \mathcal{G}$.

Proof. A result of Jones [6] implies that if $p_0 > 0, p_1 \leq 0$ and if (1.1) has oscillatory solutions, then any nontrivial nonoscillatory solution $y(t)$ satisfies $\lim_{t \to \infty} y(t) = 0$. Therefore, if $\lambda_1 > 0$ is a positive multiplier, then since the corresponding solution $y_1(t) = y_{\lambda_1}(t) = \varphi(t)e^{\rho t} \in \mathcal{R}$, it follows that $\rho_1 = \ldots$
In $\lambda_1/\omega < 0$, $0 < \lambda_1 < 1$, so that λ_2, λ_3 are both negative or complex. In any case, the corresponding solutions $\gamma_2, \gamma_3 \in \mathcal{O}$. If Condition A holds, then λ_2, λ_3 must be complex so that $|\lambda_2| = |\lambda_3| > 1$. This completes the proof.

3. Concluding remarks. In this section we wish to briefly discuss the applicability of the results of §2.

If $p_0 > 0$ and $3p_1 > p_2^2$, then $\sigma_p(t, \rho) > 0$ for all ρ and hence $\sigma(t, \rho) > 0$ for all $\rho > 0$ so that $\alpha_1 < 0$. If $p_0 < 0$ and $3p_1 > p_2^2$, then $\sigma(t, \rho) < 0$ for all $\rho < 0$ so that $\alpha_1 > 0$. Note also that $\sigma(t, \rho) > p_2^2 + p_1 + p_0 > 0$ for all $\rho > 0$ provided $p_0 > 0, p_2 > 0$ and $4p_0p_2 > p_1^2$. Thus, $\beta_1 < 0$ in this case also. Similarly, $\sigma(t, \rho) < 0$ for all $\rho < 0$ if $p_0 < 0, p_2 < 0$ and $4p_0p_2 > p_1^2$ so that $\alpha_1 > 0$ in this case. Likewise, $0 < \alpha_1 < \beta_1 < 1$ provided $\sigma(t, 0) = p_0 < 0 < \sigma(t, 1) = 1 + p_2 + p_1 + p_0$ and $\sigma_0(t, \rho) > 0$ for $\rho < 0$ and $\rho > 1$. Analogously, $-1 < \alpha_1 < \beta_1 < 0$ if $\sigma(t, 0) = p_0 > 0 > \sigma(t, -1) = -1 + p_2 - p_1 + p_0$ and $\sigma_0(t, \rho) < 0$ for $\rho < -1$ and $\rho > 0$. Finally, we note that $\beta_2 < -1 < q_2 < 0$ if $\sigma(-1, t) = -1 + p_2 - p_1 + p_0 > 0$ and $\sigma(1, t) = 1 + p_2 + p_1 + p_0 < 0$. This holds if $1 + p_1 < p_2 + p_0 < -(1 + p_1)$.

Sufficient conditions for Condition A to hold and for disconjugacy may be found in [12]. Other disconjugacy tests may be found in [1], [4], [7], [9], [11]. These tests combined with the remarks of the preceding paragraph allows one to give examples illustrating the results of §2. We leave this to the interested reader.

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ALBERTA, EDMONTON, ALBERTA, CANADA