Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A disconjugacy criterion for linear scalar differential operators


Author: James S. Muldowney
Journal: Proc. Amer. Math. Soc. 65 (1977), 93-96
MSC: Primary 34C10
DOI: https://doi.org/10.1090/S0002-9939-1977-0442367-1
MathSciNet review: 0442367
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that if a linear scalar differential operator is not disconjugate on an interval then each member of a certain family of first order vector differential equations has an oscillatory solution. Thus any condition which guarantees the nonoscillation of a member of the family is a disconjugacy criterion for the scalar operator. The form of the vector systems is convenient for the use of nonoscillation conditions developed by Nehari, Schwarz and Friedland.


References [Enhancements On Off] (What's this?)

  • [1] A. M. Fink, Differential inequalities and disconjugacy, J. Math. Anal. Appl. 49 (1975), 758-772. MR 52 #862. MR 0379958 (52:862)
  • [2] S. Friedland, Nonoscillation and integral inequalities, Bull. Amer. Math. Soc. 80 (1974), 715-717. MR 49 #10963. MR 0346238 (49:10963)
  • [3] -, Nonoscillation, disconjugacy and integral inequalities, Mem. Amer. Math. Soc. No. 176 (1976), 1-78. MR 0450677 (56:8970)
  • [4] P. Hartman, On disconjugacy criteria, Proc. Amer. Math. Soc. 24 (1970), 374-381. MR 40 #4535. MR 0251304 (40:4535)
  • [5] A. Ju. Levin, A bound for a function with monotonely distributed zeros of successive derivatives, Mat. Sb. 64 (106) (1964), 396-109. (Russian) MR 29 #4941. MR 0167669 (29:4941)
  • [6] Z. Nehari, Oscillation theorems for systems of linear differential equations, Trans. Amer. Math. Soc. 139 (1969), 339-347. MR 39 #542. MR 0239185 (39:542)
  • [7] -, Nonoscillation and disconjugacy of systems of linear differential equations, J. Math. Anal. Appl. 42 (1973), 237-254. MR 47 #8976. MR 0320437 (47:8976)
  • [8] G. Pólya, On the mean-value theorem corresponding to a given linear homogeneous differential equation, Trans. Amer. Math. Soc. 24 (1924), 312-324. MR 1501228
  • [9] B. Schwarz, Norm conditions for disconjugacy of complex differential systems, J. Math. Anal. Appl 28 (1969), 553-568. MR 40 #2963. MR 0249722 (40:2963)
  • [10] D. Willett, Generalized De la Vallée Poussin disconjugacy tests for linear differential equations, Canad. Math. Bull. 14 (1971), 419-428. MR 50 #687. MR 0348189 (50:687)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 34C10

Retrieve articles in all journals with MSC: 34C10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1977-0442367-1
Keywords: Disconjugacy, nonoscillation
Article copyright: © Copyright 1977 American Mathematical Society

American Mathematical Society