A disconjugacy criterion for linear scalar differential operators

Author:
James S. Muldowney

Journal:
Proc. Amer. Math. Soc. **65** (1977), 93-96

MSC:
Primary 34C10

MathSciNet review:
0442367

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that if a linear scalar differential operator is not disconjugate on an interval then each member of a certain family of first order vector differential equations has an oscillatory solution. Thus any condition which guarantees the nonoscillation of a member of the family is a disconjugacy criterion for the scalar operator. The form of the vector systems is convenient for the use of nonoscillation conditions developed by Nehari, Schwarz and Friedland.

**[1]**A. M. Fink,*Differential inequalities and disconjugacy*, J. Math. Anal. Appl.**49**(1975), 758–772. MR**0379958****[2]**Shmuel Friedland,*Nonoscillation and integral inequalities*, Bull. Amer. Math. Soc.**80**(1974), 715–717. MR**0346238**, 10.1090/S0002-9904-1974-13565-2**[3]**Shmuel Friedland,*Nonoscillation, disconjugacy and integral inequalities*, Mem. Amer. Math. Soc.**7**(1976), no. 176, v+78. MR**0450677****[4]**Philip Hartman,*On disconjugacy criteria*, Proc. Amer. Math. Soc.**24**(1970), 374–381. MR**0251304**, 10.1090/S0002-9939-1970-0251304-8**[5]**A. Ju. Levin,*A bound for a function with monotonely distributed zeros of successive derivatives*, Mat. Sb. (N.S.)**64 (106)**(1964), 396–409 (Russian). MR**0167669****[6]**Zeev Nehari,*Oscillation theorems for systems of linear differential equations*, Trans. Amer. Math. Soc.**139**(1969), 339–347. MR**0239185**, 10.1090/S0002-9947-1969-0239185-6**[7]**Zeev Nehari,*Nonoscillation and disconjugacy of systems of linear differential equations*, J. Math. Anal. Appl.**42**(1973), 237–254. MR**0320437****[8]**G. Pólya,*On the mean-value theorem corresponding to a given linear homogeneous differential equation*, Trans. Amer. Math. Soc.**24**(1922), no. 4, 312–324. MR**1501228**, 10.1090/S0002-9947-1922-1501228-5**[9]**Binyamin Schwarz,*Norm conditions for disconjugacy of complex differential systems*, J. Math. Anal. Appl.**28**(1969), 553–568. MR**0249722****[10]**D. Willett,*Generalized de la Vallée Poussin disconjugacy tests for linear differential equations*, Canad. Math. Bull.**14**(1971), 419–428. MR**0348189**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
34C10

Retrieve articles in all journals with MSC: 34C10

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1977-0442367-1

Keywords:
Disconjugacy,
nonoscillation

Article copyright:
© Copyright 1977
American Mathematical Society