ERRATUM TO "THE TOPOLOGICAL COMPLEMENTATION THEOREM À LA ZORN"

PAUL S. SCHNARE

There is a gap in the proof of [1]. In the notation of that paper if M is open in $M' = M \cup \{q\}$ and $p \in B_s(a)$ for some $a \in X$, then $p \in B_s(a) = B_s(a)$, but $B_s(p) = B_s(p) \cup \{q\} \not\subseteq B_s(a)$ so $B_s(p)$ is not well defined. Consequently, we cannot conclude that $M = Y$. Strengthening the hypothesis by assuming, in addition, that for each member $(A, s) \in \mathcal{A}$, A contains a (fixed) maximal T_0 subspace would eliminate the problem. This would yield the result of Gaifman (Steiner) that if every T_0 topology has a (principal) complement, then every topology has a (principal) complement.

The author thanks Horst Hensel and, especially, Henry Sharp, Jr. who first pointed out a counterexample.

REFERENCES

DEPARTMENT OF MATHEMATICS, FORDHAM UNIVERSITY, BRONX, NEW YORK 10458