Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Remote Access
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)


On vector states and separable $ C\sp*$-algebras

Author: Joel Anderson
Journal: Proc. Amer. Math. Soc. 65 (1977), 62-64
MSC: Primary 46L05
MathSciNet review: 0448090
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is proved that the set of states on a separable $ {C^\ast}$-subalgebra of the Calkin algebra may be simultaneously extended to a set of equivalent, orthogonal, pure states on the Calkin algebra.

References [Enhancements On Off] (What's this?)

  • [1] J. Anderson, Extreme points in sets of positive linear maps on $ \mathcal{B}(\mathcal{H})$ (to appear).
  • [2] James Glimm, A Stone-Weierstrass theorem for 𝐶*-algebras, Ann. of Math. (2) 72 (1960), 216–244. MR 0116210 (22 #7005)
  • [3] Dan Voiculescu, A non-commutative Weyl-von Neumann theorem, Rev. Roumaine Math. Pures Appl. 21 (1976), no. 1, 97–113. MR 0415338 (54 #3427)
  • [4] W. I. M. Wils, Stone-Čech compactification and representations of operator algebras, Doctoral dissertation, Catholic University of Nijmegen, Faculteit der Wiskunde en Natuurwetenschappen aan de Katholieke Universiteit Nijmegen, Nijmegen, 1968 (English, with Dutch summary). MR 0229059 (37 #4637)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46L05

Retrieve articles in all journals with MSC: 46L05

Additional Information

PII: S 0002-9939(1977)0448090-1
Keywords: $ {C^\ast}$-algebra, state, pure state, vector state, Calkin algebra
Article copyright: © Copyright 1977 American Mathematical Society