Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Peak points, barriers and pseudoconvex boundary points


Author: Richard F. Basener
Journal: Proc. Amer. Math. Soc. 65 (1977), 89-92
MSC: Primary 32F15; Secondary 32E25
DOI: https://doi.org/10.1090/S0002-9939-1977-0466633-9
MathSciNet review: 0466633
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let x be a smooth boundary point of a domain in $ {{\mathbf{C}}^n}$. It is shown that x is a limit of strictly pseudoconvex boundary points whenever there is a ``plurisubharmonic barrier'' for x.


References [Enhancements On Off] (What's this?)

  • [1] H. J. Bremermann, On a generalized Dirichlet problem for plurisubharmonic functions and pseudo-convex domains. Characterization of Šilov boundaries, Trans. Amer. Math. Soc. 91 (1959), 246-276. MR 25 #227. MR 0136766 (25:227)
  • [2] A. Debiard and B. Gauveau, Démonstration d'une conjecture de Bremermann sur la frontière de Šilov d'un domaine faiblement pseudoconvexe, C. R. Acad. Sci. Paris 279 (1974), p. 407.
  • [3] R. Epe, Charakterisierung des Schilowrandes von Holomorphiegebrieten, Schr. Math. Inst. Univ. Münster No. 25, (1963), 68 pp. MR 28#2251. MR 0159033 (28:2251)
  • [4] M. Hakim and N. Sibony, Frontière de Šilov et spectre de $ A(\bar D)$ pour des domaines faiblement pseudoconvexe (preprint).
  • [5] L. Hörmander, An introduction to complex analysis in several variables, Van Nostrand, Princeton, N.J., 1966. MR 34#2933. MR 0203075 (34:2933)
  • [6] J. J. Kohn, Global regularity for $ \bar \partial $ on weakly pseudo-convex manifolds, Trans. Amer. Math. Soc. 181 (1973), 273-292. MR 49 #9442. MR 0344703 (49:9442)
  • [7] P. Malliavin, Comportement à la frontière distinguée d'une fonction analytique de plusieurs variables, C. R. Acad. Sci. Paris 268 (1969), 380-381.
  • [8] -, Sur la répartition des zéros d'une fonction de la classe Nevanlinna dans le polydisque, C. R. Acad. Sci. Paris 271 (1970), 313-315.
  • [9] -, Fonctions de Green d'un ouvert strictement pseudo-convexe et classe de Nevanlinna, C. R. Acad. Sci. Paris 278 (1974), 133-139.
  • [10] P. Pflug, Über polynomiale Funktionen auf Holomorphiegebieten, Math. Z. 139 (1974), 133-139. MR 50 #7579. MR 0355102 (50:7579)
  • [11] H. Rossi, Holomorphically convex sets in several complex variables, Ann. of Math. (2) 74 (1961), 470-493. MR 24 #A3310. MR 0133479 (24:A3310)
  • [12] E. M. Stein, Boundary behavior of holomorphic functions of several complex variables, Princeton Univ. Press, Princeton, N.J., 1972. MR 0473215 (57:12890)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 32F15, 32E25

Retrieve articles in all journals with MSC: 32F15, 32E25


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1977-0466633-9
Article copyright: © Copyright 1977 American Mathematical Society

American Mathematical Society