Isotone functions on partially ordered linear algebras with a multiplicative diagonal map

Authors:
Taen Yu Dai and Ralph DeMarr

Journal:
Proc. Amer. Math. Soc. **65** (1977), 11-15

MSC:
Primary 06A70

DOI:
https://doi.org/10.1090/S0002-9939-1977-0485618-X

MathSciNet review:
0485618

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The diagonal of the product of two triangular matrices is the product of the diagonals of each matrix. This idea is used to characterize Dedekind -complete lattice ordered linear algebras which admit isotone functions with familiar functional and order properties as possessed by the real-valued logarithm or root function.

**[1]**G. Birkhoff,*Lattice theory*, Amer. Math. Soc. Colloq. Publ., vol. 25, 3rd ed., Amer. Math. Soc., Providence, R.I., 1967. MR**37**#2638. MR**0227053 (37:2638)****[2]**T. Y. Dai,*On some special classes of partially ordered linear algebras*, J. Math. Anal. Appl.**40**(1972), 649-682. MR**47**#4890. MR**0316342 (47:4890)****[3]**T. Y. Dai and R. DeMarr,*Partially ordered linear algebras with multiplicative diagonal map*, Trans. Amer. Math. Soc.**224**(1976), 179-187. MR**0419330 (54:7352)****[4]**R. V. Kadison and I. M. Singer,*Extensions of pure states*, Amer. J. Math.**81**(1959), 383-400. MR**23**#A1243. MR**0123922 (23:A1243)****[5]**-,*Triangular operator algebras*, Amer. J. Math.**82**(1960), 227-259. MR**22**#12409. MR**0121675 (22:12409)****[6]**Richard Metzler,*Representation of partially ordered linear algebras*, Bull. Amer. Math. Soc.**80**(1974), 939-940. MR**50**#6969. MR**0354491 (50:6969)****[7]**H. H. Schaefer,*Banach lattices and positive operators*, Springer-Verlag, Berlin and New York, 1974. MR**0423039 (54:11023)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
06A70

Retrieve articles in all journals with MSC: 06A70

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1977-0485618-X

Keywords:
Dedekind -complete partially ordered linear algebra,
lattice,
diagonal,
triangular matrices,
matrix inequality,
isotone functions

Article copyright:
© Copyright 1977
American Mathematical Society