An extension of an operator inequality for -numbers

Author:
James A. Cochran

Journal:
Proc. Amer. Math. Soc. **65** (1977), 44-46

MSC:
Primary 47B05; Secondary 47A10

DOI:
https://doi.org/10.1090/S0002-9939-1977-0500260-X

MathSciNet review:
0500260

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: If it is assumed that the *s*-numbers associated with a given compact operator are ordered in the usual fashion, a basic result concerning infinite series of powers of these *s*-numbers can be appropriately restated so as to refer solely either to the lead terms of the series or to its tail. A simple proof, based upon an interesting auxiliary result concerning stochastic matrices, is given for this useful improvement.

**[1]**E. F. Beckenbach and R. Bellman,*Inequalities*, Springer-Verlag, New York, 1965. MR**33**#236. MR**0192009 (33:236)****[2]**J. A. Cochran,*Composite integral operators and nuclearity*, Ark. Mat. (to appear). MR**0636394 (58:30506)****[3]**N. Dunford and J. T. Schwartz,*Linear operators*. Part II, Interscience, New York, 1963. MR**32**#6181. MR**0188745 (32:6181)****[4]**K. Fan,*Maximum properties and inequalities for the eigenvalues of completely continuous operators*, Proc. Nat. Acad. Sci. U.S.A.**37**(1951), 760-766. MR**13**, 661. MR**0045952 (13:661e)****[5]**I. C. Gohberg and M. G. Kreĭn,*Introduction to the theory of linear nonselfadjoint operators*, ``Nauka", Moscow, 1965; English transl., Transl. Math. Monographs, vol. 18, Amer. Math. Soc., Providence, R.I., 1969. MR**36**#3137;**39**#7447. MR**0246142 (39:7447)****[6]**C. A. McCarthy, , Israel J. Math.**5**(1967), 249-271. MR**37**#735. MR**0225140 (37:735)****[7]**C. Oehring and J. A. Cochran,*Integral operators and an analogue of the Hausdorff-Young theorem*, J. London Math. Soc. (to appear). MR**0454748 (56:12996)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
47B05,
47A10

Retrieve articles in all journals with MSC: 47B05, 47A10

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1977-0500260-X

Article copyright:
© Copyright 1977
American Mathematical Society