Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On a theorem of Furstenberg and the structure of topologically ergodic measures


Authors: Lewis Pakula and Robert Sine
Journal: Proc. Amer. Math. Soc. 65 (1977), 52-56
MSC: Primary 28A65; Secondary 60J05
DOI: https://doi.org/10.1090/S0002-9939-1977-0507575-X
MathSciNet review: 0507575
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: An almost everywhere convergence theorem for topologically ergodic measures stated by Furstenberg for homeomorphisms is extended to Markov operators on $ C(X)$ with compact Hausdörff state space. A structure theorem for topologically ergodic measures is obtained in the compact metric case again in the more general setting of Markov operators.


References [Enhancements On Off] (What's this?)

  • [1] E. M. Alfsen, Compact convex sets and boundary integrals, Springer-Verlag, Berlin and New York, 1971. MR 0445271 (56:3615)
  • [2] S. R. Foguel, The ergodic theory of positive operators on continuous functions, Ann. Scuola Norm. Sup. Pisa. 27 (1973), 19-51. MR 0372154 (51:8370)
  • [3] H. Furstenberg, Stationary processes and prediction theory, Princeton Univ. Press, Princeton, N.J., 1960. MR 0140151 (25:3573)
  • [4] A. Garsia, Topics in almost everywhere convergence, Markham, Chicago, Ill., 1970. MR 0261253 (41:5869)
  • [5] B. Jamison and R. C. Sine, Sample path convergence for stable Markov operators, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 28 (1974), 173-177.
  • [6] R. R. Phelps, Lectures on Choquet's theorem, Van Nostrand, Princeton, N.J., 1966. MR 0193470 (33:1690)
  • [7] R. C. Sine, Geometric theory of a single Markov operator, Pacific J. Math. 27 (1968), 155-166. MR 0240281 (39:1630)
  • [8] -, Sample path convergence of stable Markov processes. II, Indiana Univ. Math. J. 25 (1976), 23-44. MR 0391261 (52:12082)
  • [9] B. Weiss, Topological transitivity and ergodic measures, Math. Systems Theory 5 (1971), 71-75. MR 0296928 (45:5987)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 28A65, 60J05

Retrieve articles in all journals with MSC: 28A65, 60J05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1977-0507575-X
Keywords: Topologically ergodic measures, Choquet representation
Article copyright: © Copyright 1977 American Mathematical Society

American Mathematical Society