On a Hill's equation with double eigenvalues
Author:
Harry Hochstadt
Journal:
Proc. Amer. Math. Soc. 65 (1977), 373-374
MSC:
Primary 34B30
DOI:
https://doi.org/10.1090/S0002-9939-1977-0445059-8
MathSciNet review:
0445059
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: Let be the discriminant of a Hill's equation with a
-periodic potential
. It is shown that if
has only double zeros then
is necessarily
-periodic.
- [1] G. Borg, Eine Umkehrung der Sturm-Liouvilleschen Eigenwertaufgabe, Acta Math. 78 (1946), 1-96. MR 0015185 (7:382d)
- [2] H. Hochstadt, On the determination of a Hill's equation from its spectrum, Arch. Rational Mech. Anal. 19 (1965), 353-362. MR 0181792 (31:6019)
- [3] -, On the theory of Hill's matrices and related inverse spectral problems, Linear Algebra and Appl. 11 (1975), 41-52. MR 0422921 (54:10906)
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 34B30
Retrieve articles in all journals with MSC: 34B30
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1977-0445059-8
Article copyright:
© Copyright 1977
American Mathematical Society