Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Isometries of quasitriangular operator algebras


Authors: Alan Hopenwasser and Joan Plastiras
Journal: Proc. Amer. Math. Soc. 65 (1977), 242-244
MSC: Primary 46L15
DOI: https://doi.org/10.1090/S0002-9939-1977-0448111-6
MathSciNet review: 0448111
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ ({P_n})$ be an increasing sequence of finite rank projections on a separable Hilbert space. Assume $ {P_n}$ converges strongly to the identity operator I. The quasitriangular operator algebra determined by $ ({P_n})$ is defined to be the set of all bounded linear operators T for which

$\displaystyle \mathop {\lim }\limits_{x \to \infty } \left\Vert {(I - {P_n})T{P_n}} \right\Vert = 0.$

In this note we prove that two quasitriangular algebras are unitarily equivalent if, and only if, there exists a unital linear isometry mapping one algebra onto the other.

References [Enhancements On Off] (What's this?)

  • [1] W. Arveson, An invitation to $ {C^\ast}$-algebras, Springer-Verlag, Berlin and New York, 1976. MR 0512360 (58:23621)
  • [2] J. Dixmier, Les fonctionelles linéaires sur l'ensemble des opérateurs bornées d'un espace de Hilbert, Ann. of Math. 51 (1950), 387-408. MR 0033445 (11:441e)
  • [3] P. Halmos, Quasitriangular operators, Acta Sci. Math. (Szeged) 29 (1968), 283-293. MR 0234310 (38:2627)
  • [4] R. V. Kadison, Isometries of operator algebras, Ann. of Math. 54 (1951), 325-338. MR 0043392 (13:256a)
  • [5] -, Transformation of states in operator theory and dynamics, Topology 3 (1965), 177-198. MR 0169073 (29:6328)
  • [6] J. K. Plastiras, Compact perturbations of certain von Neumann algebras, Trans. Amer. Math. Soc. (to appear). MR 0458241 (56:16444)
  • [7] -, Quasitriangular operator algebras, Pacific J. Math. 64 (1976), 543-549. MR 0428065 (55:1094)
  • [8] E. Stormer, Positive linear maps of operator algebras, Acta. Math. 110 (1963), 233-278. MR 0156216 (27:6145)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46L15

Retrieve articles in all journals with MSC: 46L15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1977-0448111-6
Article copyright: © Copyright 1977 American Mathematical Society

American Mathematical Society