ON AUTOMORPHISMS OF L.C. GROUPS

JUSTIN PETERS

Abstract. The left regular representation \(\lambda \) of a locally compact group \(G \) generates a \(W^* \)-algebra \(\mathcal{A}(\lambda) \), and each topological automorphism \(\alpha \) of \(G \) has a natural extension to an automorphism \(\tilde{\alpha} \) of \(\mathcal{A}(\lambda) \). It is proved that an automorphism \(\beta \) of \(\mathcal{A}(\lambda) \) is of the form \(\beta = \tilde{\alpha} \) for \(\alpha \in \text{Aut}(G) \) iff \(\beta \) leaves a certain cone in \(\mathcal{A}(\lambda) \) invariant.

Recently a number of important results concerning automorphisms of \(W^* \)-algebras have been obtained (see e.g. [2], [4]), and in some cases these results have analogues in automorphisms of locally compact groups, or can be applied directly to yield facts about group automorphisms [6]. Let \(\lambda \) denote the left regular representation of a locally compact group \(G \) (\(\lambda(x), x \in G \), operates on an \(L^2(G) \)-function by left translation by \(x^{-1} \)) and \(\mathcal{A}(G) \) be the double commutant of \(\lambda(G) = \{ \lambda(x): x \in G \} \), or the \(W^* \)-algebra generated by \(\lambda(G) \). There is a natural imbedding of \(\text{Aut}(G) \hookrightarrow \text{Aut} \mathcal{A}(G) \): to \(\alpha \in \text{Aut}(G) \) there corresponds a unique \(\tilde{\alpha} \in \text{Aut} \mathcal{A}(G) \) satisfying \(\tilde{\alpha}\lambda(x) = \lambda(\alpha(x)) \). In this note we characterize those automorphisms of \(\mathcal{A}(G) \) which come from automorphisms of \(G \) (via the imbedding) as the set of automorphisms of \(\mathcal{A}(G) \) which leave a certain cone fixed. Also, a connection between automorphisms of \(\mathcal{A}(G) \) and the measure algebra \(\mathcal{M}(G) \) is mentioned.

If \(A \) is a Banach \(* \)-algebra, we denote by \(A^+ \) the positive cone in the dual \(A^* \) given by \(\{ f \in A^*: f(a^*a) \geq 0, a \in A \} \). There is also a cone \(A^+ = \{ a \in A: f(a) \geq 0, f \in A^+ \} \) in \(A \). A ray in \(A^+ \) is a set of the form \(R^+f, f \in A^+ \) \((R^+ = \{ r \in R: r \geq 0 \}) \). A linear functional \(f \in A^+ \) is said to lie on an extreme ray if \(f = g + h, g, h \in A^+ \), implies \(g, h \in R^+f \). The following proposition is an extension of a well-known theorem of Kelley and Vaught [5].

Proposition. Let \(A \) be a commutative Banach \(* \)-algebra with continuous involution, and \(B \subset A \) a dense subalgebra. Suppose \(\{ e_i \} \subset B \cap A^+ \) is a (not necessarily bounded) approximate identity for \(B \). Let \(f \in A^+ \); then \(f \) lies on an extreme ray if and only if \(\theta f \) is multiplicative for some \(\theta, 0 \neq \theta \in R^+ \).

Proof. Let \(f \in A^+ \) lie on an extreme ray and choose \(b \in B \) such that...
\[\|b*b\| < 1 \text{ and } f(b*b) > 0. \] Define \(g \in A^+ \) by \(g(y) = f(yb*b) \). Clearly \(g \) is positive since \(g(y*y) = f((yb)*(yb)) > 0 \). Likewise \((f - g)(y*y) = f(z*z) \), where \(z = \sum_{n=0}^{\infty} (\frac{1}{n^2})y(-b*b)^n \). (Observe that if we adjoined an identity to \(A \) in the canonical way we could write
\[
z = y \sqrt{1 - b*b} = y \sum_{n=0}^{\infty} \left(\frac{1}{n^2} \right)(-b*b)^n.
\]
Since we can write \(f = g + (f - g) \) with \(g, (f - g) \in A^+ \), it follows from the assumption on \(f \) that \(g = \mu f \), for some \(\mu \), \(0 < \mu < \infty \). But \(g(e_i) = f(e_i b*b) \neq 0 \) for sufficiently large \(i \), so \(\mu > 0 \). This implies \(\lim f(e_i) \) exists, and, in fact,
\[
\lim f(e_i) = \mu^{-1} \lim g(e_i) = \mu^{-1} \lim f(e_i b*b) = \mu^{-1} f(b*b) < \infty.
\]
Let
\[
\theta = \frac{1}{f(b*b)} = 1/\lim f(e_i).
\]
Note that \(\theta \) does not depend on \(b \). Then \(\theta g = \mu \theta f \) and \(\mu = \theta f(b*b) \). Thus
\[
\theta g(y) = \theta f(b*b) \theta f(y), \quad y \in A,
\]
or
\[
\theta f(b*by) = \theta f(b*b) \theta f(y), \quad y \in A.
\]
Observe now that this last equation is valid if in place of \(b*b \) we have \(a*a \), \(a \in A \), where \(f(a*a) = 0 \). For in that case \(|f(a*ay)^2| < f(a*a)f((ay)*(ay)) = 0 \). Since any \(x \in B^2 \) can be written as a linear combination of elements of the form \(b*b \), \(\|b*b\| < 1 \), we have \(\theta f(xy) = \theta f(x) \theta f(y), x \in B^2, y \in A \). Finally, using that \(B^2 \subset A \) is dense along with the continuity of \(f \), we have that \(\theta f(xy) = \theta f(x) \theta f(y) \) holds for all \(x, y \in A \).

The converse is easy. For let \(f \in A^+ \) be multiplicative and suppose \(f = g + h \), \(g, h \in A^+ \). Let \(N_f \) (resp., \(N_g \)) be the null space of \(f \) (resp., \(g \)). If \(x \in N_g \), then \(f(x^*x) = f(x)^*f(x) = 0 \), hence \(g(x^*x) = 0 \). But then \(|g(x)|^2 < g(x^*x) = 0 \), so \(N_g \subset N_f \). This means \(g = \mu f \) for some \(\mu \), \(0 < \mu < \infty \), and, consequently, \(f \) lies on an extreme ray. □

We apply the foregoing proposition by taking \(A \) to be \(A(G) \), the Fourier algebra of a locally compact group \(G \). Recall that \(A(G) \) is a Banach*-algebra of continuous functions on \(G \) vanishing at infinity under pointwise multiplication with complex conjugation as involution. If \(C_0(G) \) denotes the continuous functions with compact support on \(G \), then \(B = C_0(G) \cap A(G) \) is dense in \(A(G) \). Given a compact set \(k \subset G \) there is a function \(a_k \in B \), \(0 < a_k \leq 1 \). If for each compact set \(k \subset G \) we choose such an \(a_k \), order the \(k \)'s by inclusion and set \(e_k = a_k^2 = a_k* a_k \), then \(\{e_k\} \subset B \cap A^+ \) constitutes an (unbounded) approximate identity for \(B \), so the hypotheses of the proposition are satisfied.

Now \(A(G)' = \mathbb{R}(G) \), and \(\Delta(A(G)) \), the spectrum of \(A(G) \), is identified with \(G \), or, more properly, \(\lambda(G) \) (acting by pointwise evaluation) \([3, 3.34]\). Let \(P = A(G)^+ \). The cone \(P \) is not to be confused with the cone of positive
AUTOMORPHISMS of L. C. GROUPS

operators in \(\mathcal{R}(G) \): indeed, \(\lambda(x) \ (x \in G) \) is clearly in \(P \), but \(\lambda(x) \) is not even hermitian if \(x \neq x^{-1} \). Applying the above proposition, we find that the set of extreme rays of \(P \) is precisely \(\{ R^* \lambda(x) : x \in G \} \).

By an automorphism of a \(\mathcal{W}^* \) algebra we mean, of course, a *-automorphism, and this will automatically be norm-preserving.

Corollary. An automorphism \(\beta \) of \(\mathcal{R}(G) \) comes from an automorphism of \(G \) if and only if \(\beta P = P \).

Proof. \(P \) has a metrizable topology and so is well capped \([1, 30.19]\); hence by the Choquet theory \(P \) is the closed convex hull of its extreme rays. If \(\beta = \alpha, \alpha \in \text{Aut}(G) \), \(\beta \) maps the set of extreme rays of \(P \) onto itself, thus \(\beta P = P \). Suppose, conversely, that \(\beta P = P \). If \(\beta \lambda(x) = S + T, S, T \in P \), then \(\lambda(x) = \beta^{-1} S + \beta^{-1} T \). Thus \(\beta^{-1} S = \mu \lambda(x) \), some \(0 < \mu < \infty \), or \(S = \mu \beta \lambda(x) \), which means \(\beta \lambda(x) \) lies on an extreme ray. Since \(\| \beta \lambda(x) \| = 1 \), we must have \(\beta \lambda(x) = \lambda(y) \), for some \(y \in G \). Setting \(y = \alpha(x) \) we obtain a map \(\alpha: G \to G \). An easy argument now shows \(\alpha \in \text{Aut}(G) \). □

Instead of looking at the extreme rays of a certain cone in \(\mathcal{R}(G) \) we could, of course, consider the extreme points of the unit ball in \(\mathcal{R}(G), \text{Ext}(\mathcal{R}(G)) \). But any \(\beta \in \text{Aut}(G) \) must map \(\text{Ext}(\mathcal{R}(G)) \) onto itself, so in place of \(\mathcal{R}(G)_1 \) we might take \(\mathcal{M}(G)_1 \), where \(\mathcal{M}(G) \) is the measure algebra. Now \(A(G) \subseteq C_0(G) \), the continuous functions on \(G \) vanishing at infinity, so we can view \(\mathcal{M}(G) = C_0(G) \) as a subalgebra of \(\mathcal{R}(G) \). If \(\mathcal{M}(G) \) is given its own norm (and not the norm it inherits from \(\mathcal{R}(G) \)), then \(\text{Ext}(\mathcal{M}(G)_1) = \{ e^{\# \delta_x} : \theta \in R, x \in G \} \), \(\delta_x \) being the point mass at \(x \). Indeed, if \(\mu \in \mathcal{M}(G)_1 \), \(\| \mu \| = 1 \), is nonatomic, then there are nonzero \(\mu_1, \mu_2 \in \mathcal{M}(G) \), support(\(\mu_i \)) \(\subseteq \) support(\(\mu \)), \(i = 1, 2 \), satisfying support(\(\mu_1 \)) \(\cap \) support(\(\mu_2 \)) is a \(\| \mu \| \)-null set, and \(\mu = \mu_1 + \mu_2 \) with \(\| \mu_1 \| + \| \mu_2 \| = \| \mu \| = 1 \). Setting \(V_i = \| \mu_i \|^{-1} \mu_i, i = 1, 2 \), we have \(\mu = \| \mu_1 \| V_1 + || \mu_2 || V_2 \), so \(\mu \) is not extreme. On the other hand, \(e^{\# \delta_x} \in \text{Ext}(\mathcal{M}(G)_1) \). In fact, viewing \(\mathcal{M}(G) \subseteq \mathcal{R}(G) \), \(e^{\# \delta_x} \) belongs to the larger unit ball \(\mathcal{R}(G)_1 \), and \(e^{\# \delta_x} \in \text{Ext}(\mathcal{R}(G)_1) \) by \([7, 1.6.4]\).

Proposition. \(\beta \in \text{Aut} \mathcal{R}(G) \) restricts to an isometric automorphism of \(\mathcal{M}(G) \) if and only if \(\beta = \alpha \circ \gamma \), where \(\beta \in \text{Aut}(G) \) and \(\gamma \) is a group character.

Proof. Consider first that a group character acts as a *-automorphism of the group algebra \(L^1(G) \): defining \((\gamma f)(x) = \gamma(x)f(x), f \in L^1(G)\), we have that \((\gamma f) \ast (\gamma g) = \gamma(f \ast g), f, g \in L^1(G)\), and \((\gamma f)^* = \gamma f^* \), where \(f^*(x) = \Delta(x)^{-1} f(x^{-1})^{-1} \) is the involution in \(L^1(G) \). It is clear that \(\gamma \) extends to an isometric *-automorphism of the measure algebra; for \(\mu \in \mathcal{M}(G) \), we have \(d(\gamma \mu)(x) = \gamma(x) d\mu(x) \). Let \(\gamma \) act on \(\mathcal{R}(G) \) by defining \((\gamma T)g = \gamma(T(\gamma g)), T \in \mathcal{R}(G), g \in L^2(G)\), where \(\gamma \) acts by pointwise multiplication on \(L^2(G) \); i.e., \(\gamma T = \gamma T \gamma \). To see this define a *-automorphism of \(\mathcal{R}(G) \), first note for \(T \in \mathcal{R}(G), g, h \in L^2(G) \) that

\[
((\gamma T)^* g, h) = (g, \gamma Th) = (g, \gamma T \gamma h) = (\gamma g, T \gamma h)
\]

\[
= (T^* \gamma g, \gamma h) = (\gamma T^* \gamma g, h) = (\gamma T^* g, h).
\]
To show $\hat{\gamma}$ is multiplicative, observe, if $f \in L^1(G)$, $\hat{\gamma} \lambda(f) = \lambda(\gamma f)$. (We use the same notation for the left regular representation of $L^1(G)$, which acts by left convolution on $L^2(G)$, as we do for the left regular representation of G, since the former is just the Bochner-integrated form of the latter.) So for $f, g \in L^1(G)$,

$$\hat{\gamma} (\lambda(f) \lambda(g)) = \hat{\gamma} (f * g) = \lambda(\gamma (f * g))$$

$$= \lambda(\gamma(f) * (\gamma g)) = \lambda(\gamma f) \lambda(\gamma g) = \hat{\gamma} \lambda(f) \hat{\gamma} \lambda(g).$$

Then use that $\{\lambda(f) : f \in L^1(G)\} \subset \mathbb{R}(G)$ is strongly dense and the fact that multiplication in $\mathbb{R}(G)$ is jointly strongly continuous on bounded subsets to see $\hat{\gamma}$ is multiplicative on $\mathbb{R}(G)$.

Suppose now $\beta \in \text{Aut} \mathbb{R}(G)$ restricts to an isometric automorphism of $\mathbb{R}(G)$. Then β maps the unit ball of $\mathbb{R}(G)$ onto itself, hence $\text{Ext}(\mathbb{R}(G))$ is mapped onto itself. Thus $\beta \delta_x = e^{i\theta} \delta_{a(x)}$, for some $\theta \in \mathbb{R}$, and $a : G \to G$. If we set $|\beta| \delta_x = \delta_{a(x)}$, it is clear that $|\beta|$ is multiplicative on $\text{Ext}(\mathbb{R}(G))$, hence $a \in \text{Aut}(G)$. Set $\beta \delta_x = \gamma(x) \delta_{a(x)}$. A simple argument shows γ is multiplicative, hence is a group character. Thus β agrees with $\bar{a} \circ \hat{\gamma}$ on $\lambda(G)$, and since $\lambda(G)$ generates $\mathbb{R}(G)$, we must have $\beta = \bar{a} \circ \hat{\gamma}$.

REFERENCES

DEPARTMENT OF MATHEMATICS, IOWA STATE UNIVERSITY, AMES, IOWA 50011