ON AUTOMORPHISMS OF L.C. GROUPS

JUSTIN PETERS

Abstract. The left regular representation \(\lambda \) of a locally compact group \(G \) generates a \(W^* \)-algebra \(\mathfrak{A}(\lambda) \), and each topological automorphism \(\varphi \) of \(G \) has a natural extension to an automorphism \(\varphi_{\mathfrak{A}} \) of \(\mathfrak{A}(\lambda) \). It is proved that an automorphism \(\beta \) of \(\mathfrak{A}(\lambda) \) is of the form \(\beta = \varphi_{\mathfrak{A}} \) for \(\varphi \in \text{Aut}(G) \) iff \(\beta \) leaves a certain cone in \(\mathfrak{A}(\lambda) \) invariant.

Recently a number of important results concerning automorphisms of \(W^* \)-algebras have been obtained (see e.g. [2], [4]), and in some cases these results have analogues in automorphisms of locally compact groups, or can be applied directly to yield facts about group automorphisms [6]. Let \(\lambda \) denote the left regular representation of a locally compact group \(G \) \((\lambda(x), x \in G\), operates on an \(L^2(G) \)-function by left translation by \(x^{-1} \)) and \(\mathfrak{R}(G) \) be the double commutant of \(\lambda(G) = \{\lambda(x) : x \in G\} \), or the \(W^* \)-algebra generated by \(\lambda(G) \). There is a natural imbedding of \(\text{Aut}(G) \hookrightarrow \text{Aut} \mathfrak{R}(G) \): to \(\varphi \in \text{Aut}(G) \) there corresponds a unique \(\varphi_{\mathfrak{R}} \in \text{Aut} \mathfrak{R}(G) \) satisfying \(\varphi_{\mathfrak{R}}(\lambda(x)) = \lambda(\varphi(x)) \). In this note we characterize those automorphisms of \(\mathfrak{R}(G) \) which come from automorphisms of \(G \) (via the imbedding) as the set of automorphisms of \(\mathfrak{R}(G) \) which leave a certain cone fixed. Also, a connection between automorphisms of \(\mathfrak{R}(G) \) and the measure algebra \(\mathfrak{M}(G) \) is mentioned.

If \(A \) is a Banach \(*\)-algebra, we denote by \(A^+ \) the positive cone in the dual \(A' \) given by \(\{f \in A' : f(a^*a) \geq 0, a \in A\} \). There is also a cone \(A^* = \{a \in A : f(a) \geq 0, f \in A^+\} \) in \(A \). A ray in \(A^+ \) is a set of the form \(R^+f, f \in A^+ \) \((R^+ = \{r \in R : r > 0\}) \). A linear functional \(f \in A^+ \) is said to lie on an extreme ray if \(f = g + h, g, h \in A^{++} \), implies \(g, h \in R^+f \). The following proposition is an extension of a well-known theorem of Kelley and Vaught [5].

Proposition. Let \(A \) be a commutative Banach \(*\)-algebra with continuous involution, and \(B \subset A \) a dense subalgebra. Suppose \(\{e_i\} \subset B \cap A^* \) is a (not necessarily bounded) approximate identity for \(B \). Let \(f \in A^{++} \); then \(f \) lies on an extreme ray if and only if \(\theta f \) is multiplicative for some \(\theta, 0 \neq \theta \in R^+ \).

Proof. Let \(f \in A^{++} \) lie on an extreme ray and choose \(b \in B \) such that
\[\|b^*b\| < 1 \text{ and } f(b^*b) > 0. \] Define \(g \in A^+ \) by \(g(y) = f(yb^*b) \). Clearly \(g \) is positive since \(g(y^*y) = f((yb)^*(yb)) > 0. \) Likewise \((f - g)(y^*y) = f(z^*z) \), where \(z = \sum_{n=0}^{\infty} \frac{(1/2)^n}{n!}(-b^*b)^n \). (Observe that if we adjoined an identity to \(A \) in the canonical way we could write
\[
 z = y\sqrt{1 - b^*b} = y\sum_{n=0}^{\infty} \left(\frac{1/2}{n!}\right)(-b^*b)^n.
\]
Since we can write \(f = g + (f - g) \) with \(g, (f - g) \in A^+ \), it follows from the assumption on \(f \) that \(g = \mu f \), for some \(\mu, 0 < \mu < \infty \). But \(g(e_i) = f(e_i b^*b) \neq 0 \) for sufficiently large \(i \), so \(\mu > 0 \). This implies \(\lim f(e_i) \) exists, and, in fact,
\[
 \lim f(e_i) = \mu^{-1}\lim g(e_i) = \mu^{-1}\lim f(e_i b^*b) = \mu^{-1}f(b^*b) < \infty.
\]
Let
\[
 \theta = \mu/f(b^*b) = 1/\lim f(e_i).
\]
Note that \(\theta \) does not depend on \(b \). Then \(\theta g = \mu\theta f \) and \(\mu = \theta f(b^*b) \). Thus
\[
 \theta g(y) = \theta f(b^*b)\theta f(y), \quad y \in A,
\]
or
\[
 \theta f(b^*b) = \theta f(b^*b)\theta f(y), \quad y \in A.
\]
Observe now that this last equation is valid if in place of \(b^*b \) we have \(a^*a \), \(a \in A \), where \(f(a^*a) = 0 \). For in that case \(|f(a^*ay)|^2 < f(a^*a)f((ay)^*(ay)) = 0. \) Since any \(x \in B^2 \) can be written as a linear combination of elements of the form \(b^*b, \|b^*b\| < 1 \), we have \(\theta f(xy) = \theta f(x)\theta f(y), x \in B^2, y \in A \).

Finally, using that \(B^2 \subset A \) is dense along with the continuity of \(f \), we have that \(\theta f(xy) = \theta f(x)\theta f(y) \) holds for all \(x, y \in A \).

The converse is easy. For let \(f \in A^+ \) be multiplicative and suppose \(f = g + h, g, h \in A^+ \). Let \(N_f \) (resp., \(N_g \)) be the null space of \(f \) (resp., \(g \)). If \(x \in N_f \), then \(f(x^*x) = f(x^*)f(x) = 0 \), hence \(g(x^*x) = 0 \). But then \(|g(x)|^2 < g(x^*x) = 0 \), so \(N_g \subset N_f \). This means \(g = \mu f \) for some \(\mu, 0 < \mu < \infty \), and, consequently, \(f \) lies on an extreme ray. \(\square \)

We apply the foregoing proposition by taking \(A \) to be \(A(G) \), the Fourier algebra of a locally compact group \(G \). Recall that \(A(G) \) is a Banach* - algebra of continuous functions on \(G \) vanishing at infinity under pointwise multiplication with complex conjugation as involution. If \(C_c(G) \) denotes the continuous functions with compact support on \(G \), then \(B = C_c(G) \cap A(G) \) is dense in \(A(G) \). Given a compact set \(k \subset G \) there is a function \(a_k \in B \), \(0 < a_k \leq 1 \), \(a_k[k = 1] \). If for each compact set \(k \subset G \) we choose such an \(a_k \) and order the \(k \)'s by inclusion and set \(e_k = a_k^2 = a_k^*a_k \), then \(\{e_k\} \subset B \cap A^+ \) constitutes an (unbounded) approximate identity for \(B \), so the hypotheses of the proposition are satisfied.

Now \(A(G)' = \mathbb{R}(G) \), and \(\Delta(A(G)) \), the spectrum of \(A(G) \), is identified with \(G \), or, more properly, \(\lambda(G) \) (acting by pointwise evaluation) \([3, 3.34] \). Let \(P = A(G)^+ \). The cone \(P \) is not to be confused with the cone of positive
operators in $\mathcal{R}(G)$: indeed, $\lambda(x) (x \in G)$ is clearly in P, but $\lambda(x)$ is not even hermitian if $x \neq x^{-1}$. Applying the above proposition, we find that the set of extreme rays of P is precisely $\{ R^* \lambda(x): x \in G \}$.

By an automorphism of a W^\ast algebra we mean, of course, a \ast-automorphism, and this will automatically be norm-preserving.

Corollary. An automorphism β of $\mathcal{R}(G)$ comes from an automorphism of G if and only if $\beta P = P$.

Proof. P has a metrizable topology and so is well capped [1, 30.19]; hence by the Choquet theory P is the closed convex hull of its extreme rays. If $\beta = \tilde{a}$, $a \in \text{Aut}(G)$, β maps the set of extreme rays of P onto itself, thus $\beta P = P$. Suppose, conversely, that $\beta P = P$. If $\beta \lambda(x) = S + T$, $S, T \in P$, then $\lambda(x) = \beta^{-1} S + \beta^{-1} T$. Thus $\beta^{-1} S = \mu \lambda(x)$, some $0 < \mu < \infty$, or $S = \mu \beta \lambda(x)$, which means $\beta \lambda(x)$ lies on an extreme ray. Since $\| \beta \lambda(x) \| = 1$, we must have $\beta \lambda(x) = \lambda(y)$, for some $y \in G$. Setting $y = \alpha(x)$ we obtain a map $\alpha: G \to G$. An easy argument now shows $\alpha \in \text{Aut}(G)$. □

Instead of looking at the extreme rays of a certain cone in $\mathcal{R}(G)$ we could, of course, consider the extreme points of the unit ball in $\mathcal{R}(G)$. But any $\beta \in \text{Aut} \mathcal{R}(G)$ must map $\text{Ext}(\mathcal{R}(G)_1)$ onto itself, so in place of $\mathcal{R}(G)_1$ we might take $\mathcal{M}(G)_1$, where $\mathcal{M}(G)$ is the measure algebra. Now $A(G) \subset C_0(G)$, the continuous functions on G vanishing at infinity, so we can view $\mathcal{M}(G) = C_0(G)'$ as a subalgebra of $\mathcal{R}(G)$. If $\mathcal{M}(G)$ is given its own norm (and not the norm it inherits from $\mathcal{R}(G)$), then $\text{Ext}(\mathcal{M}(G)_1) = \{ e^{\delta_x}: \theta \in R, x \in G \}$, δ_x being the point mass at x. Indeed, if $\mu \in \mathcal{M}(G)_1$, $\| \mu \| = 1$, is nonatomic, then there are nonzero $\mu_1, \mu_2 \in \mathcal{M}(G)$, support($\mu_i$) \subset support(μ), $i = 1, 2$, satisfying support(μ_1) \cap support(μ_2) is a $|\mu|$-null set, and $\mu = \mu_1 + \mu_2$ with $\| \mu_1 \| + \| \mu_2 \| = \| \mu \| = 1$. Setting $V_i = \| \mu_i \|_1^{-1} \mu_i$, $i = 1, 2$, we have $\mu = \| \mu_1 \|_1 V_1 + \| \mu_2 \|_2 V_2$, so μ is not extreme. On the other hand, $\mu e^{\delta_x} \in \text{Ext}(\mathcal{M}(G)_1)$. In fact, viewing $\mathcal{M}(G) \subset \mathcal{R}(G)$, μe^{δ_x} belongs to the larger unit ball $\mathcal{R}(G)_1$, and $\mu e^{\delta_x} \in \text{Ext}(\mathcal{R}(G)_1)$ by [7, 1.6.4].

Proposition. $\beta \in \text{Aut} \mathcal{R}(G)$ restricts to an isometric automorphism of $\mathcal{M}(G)$ if and only if $\beta = \tilde{a} \circ \gamma$, where $\beta \in \text{Aut}(G)$ and γ is a group character.

Proof. Consider first that a group character acts as a \ast-automorphism of the group algebra $L^1(G)$: defining $(\gamma f)(x) = \gamma(x)f(x), f \in L^1(G)$, we have that $(\gamma f) \ast (\gamma g) = \gamma(f \ast g), f, g \in L^1(G)$, and $(\gamma f)^\ast = \gamma f^\ast$, where $f^\ast(x) = \Delta(x)^{-1} f(x^{-1})^{-1}$ is the involution in $L^1(G)$. It is clear that γ extends to an isometric \ast-automorphism of the measure algebra; for $\mu \in \mathcal{M}(G)$, we have $d(\gamma \mu)(x) = \gamma(x) d\mu(x)$. Let γ act on $\mathcal{R}(G)$ by defining $(\gamma T) g = \gamma(T(\gamma g)), T \in \mathcal{R}(G), g \in L^2(G)$, where γ acts by pointwise multiplication on $L^2(G)$; i.e., $\gamma T = \gamma T\gamma$. To see this define a \ast-automorphism of $\mathcal{R}(G)$, first note for $T \in \mathcal{R}(G), g, h \in L^2(G)$ that

$$((\gamma T)^\ast g, h) = (g, \gamma T h) = (g, \gamma T \gamma h) = (\gamma g, T \gamma h) = (T^\ast \gamma g, \gamma h) = (\gamma T^\ast \gamma g, h) = (\gamma T^\ast g, h).$$
To show $\hat{\gamma}$ is multiplicative, observe, if $f \in L^1(G)$, $\hat{\gamma}\lambda(f) = \lambda(\gamma f)$. (We use the same notation for the left regular representation of $L^1(G)$, which acts by left convolution on $L^2(G)$, as we do for the left regular representation of G, since the former is just the Bochner-integrated form of the latter.) So for $f, g \in L^1(G)$,

$$
\hat{\gamma}(\lambda(f)\lambda(g)) = \hat{\gamma}(f \ast g) = \lambda(\gamma(f \ast g))
$$

$$
= \lambda((\gamma f) \ast (\gamma g)) = \lambda(\gamma f)\lambda(\gamma g) = \hat{\gamma}\lambda(f)\hat{\gamma}\lambda(g).
$$

Then use that $\{\lambda(f): f \in L^1(G)\} \subset \mathfrak{H}(G)$ is strongly dense and the fact that multiplication in $\mathfrak{H}(G)$ is jointly strongly continuous on bounded subsets to see $\hat{\gamma}$ is multiplicative on $\mathfrak{H}(G)$.

Suppose now $\beta \in \text{Aut} \mathfrak{H}(G)$ restricts to an isometric automorphism of $\mathfrak{H}(G)$. Then β maps the unit ball of $\mathfrak{H}(G)$ onto itself, hence $\text{Ext}(\mathfrak{H}(G))$ is mapped onto itself. Thus $\beta \delta_x = e^{i\theta} \delta_{\alpha(x)}$, for some $\theta \in R$, and $\alpha: G \to G$. If we set $|\beta| \delta_x = \delta_{\alpha(x)}$, it is clear that $|\beta|$ is multiplicative on $\text{Ext}(\mathfrak{H}(G))$, hence $\alpha \in \text{Aut}(G)$. Set $\beta \delta_x = \gamma(x) \delta_{\alpha(x)}$. A simple argument shows γ is multiplicative, hence is a group character. Thus β agrees with $\tilde{\alpha} \circ \tilde{\gamma}$ on $\lambda(G)$, and since $\lambda(G)$ generates $\mathfrak{H}(G)$, we must have $\beta = \tilde{\alpha} \circ \tilde{\gamma}$.

References