Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

An individual ergodic theorem


Journal: Proc. Amer. Math. Soc. 65 (1977), 235-241
MSC: Primary 28A65; Secondary 47A35
DOI: https://doi.org/10.1090/S0002-9939-1977-0450520-6
MathSciNet review: 0450520
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: An individual ergodic theorem is proved for a linear operator T on $ {L_1}$ of a finite measure space which satisfies certain norm conditions.


References [Enhancements On Off] (What's this?)

  • [1] M. A. Akcoglu and A. Brunel, Contractions on $ {L_1}$-spaces, Trans. Amer. Math. Soc. 155 (1971), 315-325. MR 0276439 (43:2186)
  • [2] R. V. Chacon, Operator averages, Bull. Amer. Math. Soc. 68 (1962), 351-353. MR 0142718 (26:287)
  • [3] -, Convergence of operator averages, Ergodic Theory (Proc. Internat. Sympos., Tulane Univ., New Orleans, La., 1961), Academic Press, New York, 1963, pp. 89-120. MR 0160872 (28:4081)
  • [4] R. V. Chacon and U. Krengel, Linear modulus of a linear operator, Proc. Amer. Math. Soc. 15 (1964), 553-559. MR 0164244 (29:1543)
  • [5] Y. Derriennic and M. Lin, On invariant measures and ergodic theorems for positive operators, J. Functional Anal. 13 (1973), 252-267. MR 0355001 (50:7478)
  • [6] N. Dunford and J. T. Schwartz, Linear operators. I: General theory, Pure and Appl. Math., vol. 7, Interscience, New York, 1958. MR 0117523 (22:8302)
  • [7] R. Sato, Ergodic properties of bounded $ {L_1}$-operators, Proc. Amer. Math. Soc. 39 (1973), 540-546. MR 0414828 (54:2920)
  • [8] -, Ergodic theorems for semigroups of positive operators, J. Math. Soc. Japan (to appear). MR 0467353 (57:7212)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 28A65, 47A35

Retrieve articles in all journals with MSC: 28A65, 47A35


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1977-0450520-6
Keywords: Individual and mean ergodic theorems, Chacon's general ratio ergodic theorem, finite measure space, linear operator, linear modulus of a linear operator, norm conditions
Article copyright: © Copyright 1977 American Mathematical Society

American Mathematical Society