Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Nonexistence of global solutions and bifurcation analysis for a boundary-value problem of parabolic type


Author: C. V. Pao
Journal: Proc. Amer. Math. Soc. 65 (1977), 245-251
MSC: Primary 35K60
DOI: https://doi.org/10.1090/S0002-9939-1977-0454362-7
MathSciNet review: 0454362
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The aim of this paper is to present a bifurcation analysis on the existence of the nonexistence of a global solution for a semilinear parabolic equation and to characterize the local stability and the instability of the corresponding steady-state solutions. The bifurcation result can be described either by a parameter $ \lambda $ for a fixed spatial domain $ \Omega $ or by varying $ \Omega $ for a fixed $ \lambda $. The stability analysis gives a result which can be used to determine the stability or instability problem when the system possesses nonintersecting multiple steady-state solutions.


References [Enhancements On Off] (What's this?)

  • [1] H. Amann, On the existence of positive solutions of nonlinear elliptic boundary value problems, Indiana Univ. Math. J. 21 (1971/72), 125-146. MR 45 #5558. MR 0296498 (45:5558)
  • [2] C. Bandle, Existence theorems, qualitative results and a priori bounds for a class of nonlinear Dirichlet problems, Arch. Rational Mech. Anal. 59 (1975), 219-238. MR 0454336 (56:12587)
  • [3] J. P. G. Ewer and L. A. Peletier, On the asymptotic behavior of solutions of semilinear parabolic equations, SIAM J. Appl. Math. 28 (1975), 43-53. MR 0407425 (53:11200)
  • [4] A. Friedman, Partial differential equations of parabolic type, Prentice-Hall, Englewood Cliffs, N. J., 1964. MR 31 #6062. MR 0181836 (31:6062)
  • [5] H. Fujita, On the nonlinear equations $ \Delta u + {e^u} = 0$ and $ \partial v/\partial t = \Delta v + {e^v}$, Bull. Amer. Math. Soc. 75 (1969), 132-135. MR 39 #615. MR 0239258 (39:615)
  • [6] I. M. Gel'fand, Some problems in the theory of quasilinear equations, Amer. Math. Soc. Transl. (2) 29 (1963), 295-381. MR 27 #3921. MR 0153960 (27:3921)
  • [7] K. Hayakawa, On non-existence of global solutions of some semi-linear parabolic differential equations, Proc. Japan Acad. 49 (1973), 503-505. MR 0338569 (49:3333)
  • [8] D. D. Joseph and E. M. Sparrow, Nonlinear diffusion induced by nonlinear sources, Quart. Appl. Math. 28 (1970), 327-342. MR 42 #7153. MR 0272272 (42:7153)
  • [9] H. B. Keller and D. S. Cohen, Some positone problems suggested by nonlinear heat generation, J. Math. Mech. 16 (1967), 1361-1376. MR 35 #4552. MR 0213694 (35:4552)
  • [10] C. V. Pao, Successive approximations of some nonlinear initial boundary value problems, SIAM J. Math. Anal. 5 (1974), 91-102. MR 49 #4265. MR 0339507 (49:4265)
  • [11] -, Positive solutions of a nonlinear boundary value problem of parabolic type, J. Differential Equations 22 (1976), 145-163. MR 0422876 (54:10862)
  • [12] M. H. Protter and H. F. Weinberger, Maximum principles in differential equations, Prentice-Hall, Englewood Cliffs, N. J., 1967. MR 36 #2935. MR 0219861 (36:2935)
  • [13] -, On the spectrum of general second order operators, Bull. Amer. Math. Soc. 72 (1966), 251-255. MR 32 #7939. MR 0190527 (32:7939)
  • [14] D. H. Sattinger, Monotone methods in nonlinear elliptic and parabolic boundary value problems, Indiana Univ. Math. J. 21 (1971/72), 979-1000. MR 45 #8969. MR 0299921 (45:8969)
  • [15] S. Sugitani, On non-existence of global solutions for some nonlinear integral equations, Osaka J. Math. 12 (1975), 45-51. MR 0470493 (57:10247)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 35K60

Retrieve articles in all journals with MSC: 35K60


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1977-0454362-7
Keywords: Nonexistence of global solution, parabolic equation, local stability and instability, bifurcation analysis
Article copyright: © Copyright 1977 American Mathematical Society

American Mathematical Society