A short short proof of the Cartwright-Littlewood theorem
Author:
Morton Brown
Journal:
Proc. Amer. Math. Soc. 65 (1977), 372
MSC:
Primary 55C20
DOI:
https://doi.org/10.1090/S0002-9939-1977-0461491-0
MathSciNet review:
0461491
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: Each orientation preserving homeomorphism of the plane that is invariant on a nonseparating bounded continuum has a fixed point on the continuum.
- [1] M. L. Cartwright and J. C. Littlewood, Some fixed point theorems, Ann. of Math. 54 (1951), 1-37. MR 0042690 (13:148f)
- [2] O. H. Hamilton, A short proof of the Cartwright Littlewood fixed point theorem, Canad. J. Math. 6 (1954), 522-523. MR 0064394 (16:276a)
- [3] L. E. J. Brouwer, Beweis des Ebenen Translationssatzes, Math. Ann. 72 (1912), 36-54. MR 1511684
- [4] Harold Bell, A fixed point theorem for planar homeomorphisms, Bull. Amer. Math. Soc. 82 (1976), 778-780. MR 0410710 (53:14457)
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 55C20
Retrieve articles in all journals with MSC: 55C20
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1977-0461491-0
Keywords:
Fixed point,
homeomorphism,
Cartwright-Littlewood
Article copyright:
© Copyright 1977
American Mathematical Society