ON π'-CLOSURE OF π-HOMOGENEOUS GROUPS

PAMELA FERGUSON

Abstract. Let π be a set of odd primes. It is known that π'-closed groups are π-homogeneous, but that the converse does not hold in general. In this paper we prove that a finite group G which is D_{π} and π-homogeneous is π'-closed.

Let G be a finite group, and let $\pi(G)$ denote the set of prime divisors of $|G|$. Let π be a subset of $\pi(G)$; then G is π-homogeneous if $N_G(H)/C_G(H)$ is a π-group whenever H is a nontrivial π-group. Let $\pi' = \pi(G) - \pi$; then G is π'-closed if the set of π'-elements forms a subgroup of G.

It is known that π'-closed groups are π-homogeneous. The converse does not hold in general. For example, A_5 is $5'$-homogeneous, but A_5 is not 5-closed. Thus, some extra conditions are necessary in order that π-homogeneity implies π'-closure. We shall say that G is a D_{π} group if all maximal π-subgroups of G are conjugate S_{π}-subgroups. It should be noted that we do not assume all S_{π}-subgroups of G are solvable. Z. Arad [1] has conjectured that if π is a set of primes, then D_{π} and π-homogeneity imply π'-closure. This conjecture is proved in the theorem below.

Theorem. Let G be a finite group such that G is D_{π} and π-homogeneous, then G is π'-closed.

Throughout this paper we assume $G \in$ Hypothesis A.

Hypothesis A. Let π be a set of primes. G is a D_{π} π-homogeneous group of minimal order such that G is not π'-closed.

We will argue by contradiction to show that no such group G ($G \in$ Hypothesis A) exists.

If $G \in$ Hypothesis A, clearly $\pi(G) \neq \pi$. Let D denote a maximal π-subgroup of G. If H is a subgroup of G, and τ is a set of primes, then let $|H|_{\tau}$ be defined by $|H| = |H|_{s, \tau}$ where $(s, \tau) = 1$.

The following two results were proved in [2].

Lemma 1 [2, Lemma 2.3]. Subgroups and epimorphic images of π-homogeneous groups are π-homogeneous.

Lemma 2 [2, Lemma 2.4]. If K is a normal subgroup of the π-homogeneous group H, and if K and H/K are π'-closed, then H is π'-closed.

Lemma 3. Assume $G \in$ Hypothesis A; then $|O_{\pi}(G)| = 1$.

Received by the editors November 16, 1976.

Proof. We will assume \(|O_\pi(G)| > 1 \) and obtain a contradiction.

Let \(\overline{H} \) denote the image of a subset \(H \subseteq G \) in \(G / O_\pi(G) \). Since \(G \) is \(D_\pi \), \(O_\pi(G) \subseteq D^\delta \) for all \(g \in G \). Order arguments imply that the subgroups \(D^\delta \) are \(S_\pi \) subgroups of \(\overline{G} \).

Let \(\overline{H} \) be a maximal \(\pi \) subgroup of \(\overline{G} \). The fundamental homomorphism theorem implies \(|H| \mid |G| \). Now \(G \) a \(D_\pi \) group implies \(H \subseteq D^\delta \) for \(g \in G \). Thus \(\overline{H} \subseteq D^\delta \). The maximality of \(H \) implies \(\overline{H} = D^\delta \). Hence \(\overline{G} = D_\pi \).

Lemma 1 implies \(\overline{G} \) is \(\pi \)-homogeneous. Now \(|O_\pi(G)| > 1 \) implies \(|G| < |G| \). Hence \(G \in \text{Hypothesis A} \) implies \(\overline{G} \) is \(\pi' \)-closed. Now \(O_\pi(G) \) is trivially \(\pi' \)-closed so that Lemma 2 implies \(G \) is \(\pi' \)-closed. Thus if \(G \in \text{Hypothesis A} \), then \(O_\pi(G) = 1 \).

Lemma 4. Assume \(G \in \text{Hypothesis A} \) and \(S \) is a nontrivial \(p \) subgroup of \(D \).

Then the following conditions hold:

(i) \(N_G(S) \) is \(\pi' \)-closed;
(ii) \(N_G(S) = N_D(S)O_\pi(C_G(S)) \);
(iii) \(S \subseteq D^w \) implies \(D^w = D^\pi \) where \(y \in O_\pi(C_G(S)) \).

Proof. Lemma 1 implies \(N_G(S) \) is \(\pi \)-homogeneous and Lemma 3 implies \(|N_G(S)| < |G| \). Hence, in order to show that \(N_G(S) \) is \(\pi' \)-closed it is sufficient to show that \(N_G(S) = D_e \).

Suppose \(K \) is a maximal \(\pi \) subgroup of \(N_G(S) \). Clearly \(K \supseteq S \). Since \(G \) is \(D_\pi \), \(K \subseteq D^\delta \) for some \(g \in G \). Hence \(K = N_D(S) \) where \(S \subseteq D^\delta \).

Let \(p^n = |D|^\delta \). We will proceed by induction on \(p^n / |S| \). If \(p^n / |S| = 1 \), then \(S \) is a Sylow \(p \) subgroup of \(D \). Suppose that \(S \subseteq D^w \cap D \). Sylow’s theorems imply \(S = S^w \) where \(d \in D \). Hence

\[
N_D^w(S) = N_D^w(S^w) = (N_D(S))^d^w.
\]

Now \(d^w \in N_G(S) \) implies

\[
(*) \quad N_D^w(S) = (N_D(S))^r \quad \text{where} \quad r \in N_G(S).
\]

Now let \(K \) be a maximal \(\pi \) subgroup of \(N_G(S) \); then \(K = N_D(S) \) where \(S \subseteq D^w \). Thus (*) implies \(K \) is conjugate in \(N_G(S) \) to \(N_D(S) \). In particular, \(N_D(S) \) is a maximal \(\pi \) subgroup of \(N_G(S) \). Moreover, all maximal \(\pi \) subgroups are conjugate in \(N_G(S) \) to \(N_D(S) \). It follows easily that \(N_G(S) \) is \(D_e \). Hence, \(N_G(S) \) is \(\pi' \)-closed. Since \(N_G(S) \) is \(\pi \)-homogeneous, we see that \(O_\pi(N_G(S)) = O_\pi(C_G(S)) \). Order arguments now imply \(N_G(S) = N_D(S)O_\pi(C_G(S)) \).

If \(S \subseteq D^w \), then \(S = S^d^w \) for \(d \in D \) implies \(d^w \in N_G(S) \). Thus, \(d^w = d_2 y \) where \(d_2 \in N_D(S) \) and \(y \in O_\pi(C_G(S)) \). Hence \(D^w = D^\pi \).

Now suppose \(p^n > p^n / |S| > 1 \) and the lemma is true for all \(T \) such that \(p^n / |T| < p^n / |S| \) (i.e., \(|T| > |S| \)).

Let \(S_1 \) be a Sylow \(p \) subgroup of \(N_G(S) \), and let \(K \) be a maximal \(\pi \) subgroup of \(N_G(S) \) such that \(S_1 \subseteq K \). Then \(K = N_D(S) \) where \(S \subseteq D^f \). Now \(S \) is not a Sylow \(p \) subgroup of \(D \). Hence Sylow’s theorems imply if \(T \) is a Sylow \(p \) subgroup of \(N_D(S) \), then \(|T| > |S| \). Moreover, \(T \subseteq S_1^r \) where \(r \in
Thus $T \subseteq K' \cap D \subseteq D^{r'} \cap D$. Since $|T| > |S|$, $D^{r'} = D^r$ where $y \in O_\pi(C_G(T))$. Hence, $D^r = D^{x^{-1}}$, which implies

$$N_D^r(S) = N_{D^{x^{-1}}}(S) = \left(N_D(S^{y^{-1}}) \right)^{x^{-1}}.$$

However, $S \subseteq T$ implies $y \in C_G(S)$. Hence, $N_D(S) = (N_D(S))^{y^{-1}}$ where $y^{x^{-1}} \in N_G(S)$. Thus $N_D(S)$ is conjugate to $N_D(S)$ in $N_G(S)$. In particular, $N_D(S)$ is a maximal π-subgroup of $N_G(S)$ and T is a Sylow p-subgroup of $N_G(S)$.

Suppose $S \subseteq D^w$; then S is not a Sylow p-subgroup of D^w. Hence if V is a Sylow p-subgroup of $N_D(S)$, then $|V/S| > p$. Sylow's theorems imply $V \subseteq T'$ where $r \in N_G(S)$. Thus $V = T_1'$ where $T_1 \subseteq T$ and $T_1 \supset S$. Hence $T_1 = V^{x^{-1}} \subseteq D^{x^{-1}} \cap D$. Now $|T_1| > |S|$ implies $D^{x^{-1}} = D^x$ where $x \in O_\pi(C_G(T_1))$. Hence $x \in C_G(S)$, so that $D^x = D^y$, where $y = x^{-1} \in N_G(S)$. Thus

$$N_D^x(S) = N_D^y(S) = \left(N_D(S^{y^{-1}}) \right)^{x^{-1}} = \left(N_D(S) \right)^{x^{-1}}.$$

Thus $N_D^x(S)$ is conjugate in $N_G(S)$ to $N_D(S)$. In particular, $N_D^x(S)$ is a maximal π-subgroup of $N_G(S)$. If K is any maximal π-subgroup of $N_G(S)$, then $K = N_D^x(S)$ for some $D^w \supseteq S$. Hence $K = (N_D(S))^{y^{-1}}$, where $z \in N_G(S)$. It follows that $N_D(S)$ is D^w. Lemmas 1 and 3 imply $N_G(S)$ is π-closed. Now $O_\pi(N_G(S)) = O_\pi(C_G(S))$, and order arguments imply $N_G(S) = N_D(S)O_\pi(C_G(S))$.

If $S \subseteq D^w$, then the previous paragraph implies $N_D^w(S)$ is a maximal π-subgroup of $N_G(S)$. Since $N_G(S) = N_D(S)O_\pi(C_G(S))$, $N_D^w(S) = (N_D(S))^{x^{-1}}$ for $x \in O_\pi(C_G(S))$. Thus $D^{w^{-1}} \cap D \supseteq T$. Now $|T| > |S|$ implies $D^{w^{-1}} = D^u$ where $u \in O_\pi(C_G(T))$. Thus $D^w = D^y$ where $y = ux$ clearly is contained in $O_\pi(C_G(S))$. The lemma follows by induction.

Lemma 5. Assume $G \in$ Hypothesis A. Let $z \in D^w$; then $C_G(z)$ is π-closed. Moreover, $z \in D^w$ implies $D^w = D^y$ where $y \in O_\pi(C_G(z))$.

Proof. Let z be an element of minimal order such that the lemma fails. Suppose $|\langle z \rangle| = p^k$ where p is a prime. Lemma 4 implies a contradiction. Thus we may assume $z = z_1z_2$ where $|\langle z_1 \rangle| = p^n > 1$. $|\langle z_2 \rangle|$, $p = 1$, and $z_2 \neq 1$. Clearly $C_G(z) = C_G(z_1) \cap C_G(z_2)$. Since $1 < |\langle z_i \rangle| < |\langle z \rangle|$ for $i = 1, 2$, $C_G(z_i)$ is π-closed for $i = 1, 2$. Hence $C_G(z)$ is π-closed.

Now $z \in D \cap D^w$ implies $z_i \in D \cap D^w$ for $i = 1, 2$. Lemma 4 implies $D^w = D^y$ where $y \in O_\pi(C_G(z_1))$. Hence, $z_2 \in D^y = D^w$ which implies $z_2^{-1} \in D$. Thus

$$[z_2, y^{-1}] = z_2^{-1}z_2^{y^{-1}} \in D \cap O_\pi(C_G(z_1)) = 1.$$

Therefore,

$$y \in O_\pi(C_G(z_1)) \cap O_\pi(C_G(z_2)) = O_\pi(C_G(z)).$$

Lemma 6. Assume $G \in$ Hypothesis A. Any two elements of D^w which are conjugate in G are also conjugate in D.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Proof. Suppose \(z_1 = z_2^w \) where \(z_1, z_2 \in D^\# \). Then \(z_1 \in D \cap D^w \). Lemma 5 implies \(D^w = D^y \) where \(y \in O_{\pi'}(C_G(z_1)) \). Hence \(wy^{-1} \in N_G(D) \). Since \(D \) is a Hall \(\pi \)-subgroup of \(G \), \(|N_G(D)/D| = |G|_{\pi'} \). Theorem 6.2.1 [5] implies \(N_G(D) = MD \) where \(M \) is a \(\pi' \)-subgroup of \(N_G(D) \). Since \(N_G(D) \) is \(\pi \)-homogeneous we see that \(M \subseteq C_G(D) \). Hence, \(N_G(D) = M \times D \). Now \(wy^{-1} \in N_G(D) \) implies \(w = duy^{-1} \) where \(u \in M \). Thus \(z_1 = z_2^w \) implies \(z_2 = z_1^{y^{-1}u^{-1}d^{-1}} = z_1^{d^{-1}} \). Thus \(z_1 \) is conjugate to \(z_2 \) in \(D \).

Proof of Theorem. In order to prove the Theorem, we will show that \(G \) satisfies the hypothesis of Theorem 8.22 of [6] with \(H = D \). Let \(E \) be an elementary subgroup of \(G \) such that \(|E| \mid |D| \). Since \(G \) is \(D^g, E \subseteq D^\# \) for some \(g \in G \). Hence \(E \) is conjugate to a subgroup of \(D \). Lemma 6 implies whenever two elements of \(D \) are conjugate in \(G \), then they are conjugate in \(D \). Theorem 8.22 [6] now implies \(G \) is \(\pi' \)-closed.

References

Department of Mathematics, University of Miami, Coral Gables, Florida 33124