Sums of independent random variables and the Burkholder transforms
Author:
J.-P. Gabriel
Journal:
Proc. Amer. Math. Soc. 66 (1977), 123-127
MSC:
Primary 60G45; Secondary 60G50
DOI:
https://doi.org/10.1090/S0002-9939-1977-0451392-6
MathSciNet review:
0451392
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: This note shows a connection between the unconditionally a.e. convergence of series with independent increments and the a.e. convergence of their Burkholder transforms. Using this result, it is then proved that the -bounded condition of Burkholder is the best one in the class of martingales, which assures the a.e. convergence of their transforms.
- [D] L. Burkholder, Martingale transforms, Ann. Math. Statist. 37 (1966), 1494-1504. MR 0208647 (34:8456)
- [K] L. Chung, A course in probability theory, Harcourt, Brace and World, New York, 1968. MR 0229268 (37:4842)
- [J] L. Doob, Stochastic processes, Wiley, New York, 1953. MR 0058896 (15:445b)
- [P] W. Millar, Martingales with independent increments, Ann. Math. Statist. 40 (1969), 1033-1041. MR 0243605 (39:4926)
- [E] R. van Kampen, Infinite product measure and infinite convolutions, Amer. J. Math. 62 (1940). MR 0001282 (1:209d)
- [J] -P. Gabriel, Loi des grands nombres, séries et martingales indexées par un ensemble filtrant, Thèse de doctorat, EPF-Lausanne, Septembre 1975.
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 60G45, 60G50
Retrieve articles in all journals with MSC: 60G45, 60G50
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1977-0451392-6
Keywords:
Independent random variables,
unconditionally a.e. convergence,
Burkholder transform,
martingales
Article copyright:
© Copyright 1977
American Mathematical Society