Operators in the commutant of a reductive algebra

Author:
Robert L. Moore

Journal:
Proc. Amer. Math. Soc. **66** (1977), 99-104

MSC:
Primary 47C05; Secondary 47A65

DOI:
https://doi.org/10.1090/S0002-9939-1977-0454730-3

MathSciNet review:
0454730

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a reductive algebra. It is shown that there is a subspace that reduces and such that the commutant of is selfadjoint and the commutant of consists of hyporeductive operators. It is then shown that under a variety of conditions, if an operator *T* is in , then is in .

**[1]**C. K. Fong,*On operators with reducing hyperinvariant subspaces*(preprint).**[2]**-,*On commutants of reductive algebras*, Proc. Amer. Math. Soc.**63**(1977), 111-114. MR**0440416 (55:13291)****[3]**P. R. Halmos,*A Hilbert space problem book*, Van Nostrand, Princeton, N.J., 1967. MR**0208368 (34:8178)****[4]**T. B. Hoover,*Operator algebras with reducing invariant subspaces*, Pacific J. Math.**44**(1973), 173-179. MR**0315477 (47:4026)****[5]**R. L. Moore,*Reductive operators that commute with a compact operator*, Michigan Math. J.**22**(1975), 229-233. MR**0394246 (52:15049)****[6]**-,*Hyperinvariant subspaces of reductive operators*, Proc. Amer. Math. Soc.**63**(1977), 91-94. MR**0435888 (55:8839)****[7]**C. Pearcy, J. R. Ringrose and N. Salinas,*Remarks on the invariant subspace problem*, Michigan Math. J.**21**(1974), 163-166. MR**0343062 (49:7806)****[8]**H. Radjavi and P. Rosenthal,*Invariant subspaces*, Springer-Verlag, Berlin and New York, 1973. MR**0367682 (51:3924)****[9]**P. Rosenthal,*On commutants of reductive operator algebras*, Duke Math. J.**41**(1974), 829-834. MR**0358395 (50:10861)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
47C05,
47A65

Retrieve articles in all journals with MSC: 47C05, 47A65

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1977-0454730-3

Keywords:
Reductive algebra,
hyperinvariant subspace,
hyporeductive operator

Article copyright:
© Copyright 1977
American Mathematical Society