CLUSTER SETS ON OPEN RIEMANN SURFACES

MIKIO NIIMURA

ABSTRACT. Generalizations of theorems of Gross-Iversen type on exceptional values are given for analytic mappings on open Riemann surfaces.

The classical, well-known theorems of Picard and Iversen (cf. [2, p. 3]) concerning isolated, essential singularities were extended to those of Hällström and Cartwright (cf. [2, pp. 10, 15]) concerning essential singularities of capacity zero, respectively. These extensions were furthermore extended to the theorems of Tsuji and Noshiro (cf. [2, pp. 14, 19]) which are stated as follows:

Let D be an arbitrary domain, B its boundary, A a compact set of capacity zero on B and z_0 a point of A. Let $\varphi(z)$ be single-valued and meromorphic in D. $C_D(\varphi, z_0)$ and $C_{B-A}(\varphi, z_0)$ denote the full cluster set of $\varphi(z)$ at z_0 and the boundary cluster set of $\varphi(z)$ at z_0 modulo A, respectively.

1. Every value of $C_D(\varphi, z_0) - C_{B-A}(\varphi, z_0)$ is assumed by $\varphi(z)$ infinitely often in any neighborhood of z_0 except for a possible set of values of capacity zero.

2. If $\alpha \in C_D(\varphi, z_0) - C_{B-A}(\varphi, z_0)$ is an exceptional value of $\varphi(z)$ in a neighborhood of z_0, then either α is an asymptotic value of $\varphi(z)$ at z_0 or there is a sequence $\xi_n \in A$ $(n = 1, 2, 3, \ldots)$ converging to z_0 such that α is an asymptotic value of $\varphi(z)$ at each ξ_n.

In this paper, (1) and (2) will be generalized for analytic mappings from open Riemann surfaces into Riemann surfaces. These generalizations will be given by Theorem 1 and Theorem 2.

Let f be an analytic mapping from an open Riemann surface R into a Riemann surface S. Let R^* and S^* denote a metrizable compactification and an arbitrary compactification of R and S, respectively. \bar{X} and $\text{bdy } X$ mean the closure and the boundary of a subset X of R^* or S^* with respect to R^* or S^*, respectively. ∂X means the relative boundary of a subset X of R or S with respect to R or S.

We write $\Delta = R^* - R$. The full cluster set of f at $p \in \Delta$ is defined as

$C(f, p) = \bigcap_{r > 0} (f(U(p, r) \cap R))$, where $U(p, r)$ denotes the r-neighborhood of p. For a set E on Δ, the boundary cluster set of f at p modulo E is defined...
as \(C_{\Delta -E}(f, p) = \bigcap_{r>0} \bigcup_{q \in W(p, r)} \mathcal{C}(f, q) \), where \(W(p, r) = U(p, r) \cap \Delta - E - \{p\} \). It is said that a path \(\gamma(t) (0 < t < 1) \) in \(R \) tends to a connected set \(K (\subset \Delta) \), when for any \(r \)-neighborhood \(U(K, r) \) of \(K \), there is a \(t(K, r) \) such that \(\gamma(t) \subset U(K, r) \) for all \(t > t(K, r) \). Henceforth let \(V(P), V_0(P) \) and \(V^*(P) \) denote parametric disks about a point \(P \) of \(R \) or \(S \).

Theorem 1. Let \(E \) be a polar set on \(\Delta \) and \(p \) a point of \(E \). Let \(r_1 > r_2 > \cdots > r_n \to 0 \). If \(E \cap \text{bdy } U(p, r_n) = \emptyset \) for every \(n \), then every point of \(F = C(f, p) \cap S - C_{\Delta -E}(f, p) \) is assumed by \(f \) infinitely often in any \(U \in \{U(p, r)\} \), with a possible exceptional set of capacity zero.

Proof. Let \(f_{U \cap R} \) denote the restriction of \(f \) to \(U \cap R \) and \(n(f_{U \cap R}, b) \) the number of the points of \(f_{U \cap R}^{-1}(b) \) for each \(b \in S \), where each point is counted with its multiplicity. \(n(f_{U \cap R}, b) \) is lower semicontinuous on \(S \) and, hence, \(F_n = \{b \in S; n(f_{U \cap R}, b) < n\} (n = 0, 1, 2, \ldots) \) is relatively closed in the open set \(S - C_{\Delta -E}(f, p) \). Suppose that \(\{b \in F_n; n(f_{U \cap R}, b) < \infty\} \) is of positive capacity. Then there is an \(N (0 < N < \infty) \) for which \(F_{N-1} = \emptyset \) is of capacity zero and \(F_N \) is of positive capacity, where \(F_{-1} = \emptyset \). It is possible to find some \(c \in F_N - F_{N-1} \), which is not a branch point, such that for any \(V(c), V(c) \cap F_N \) is of positive capacity.

First consider the case where \(U(p, r) \cap (\Delta - E) \neq \emptyset \) for every \(U(p, r) \). Then \(C_{\Delta -E}(f, p) \neq \emptyset \). Choose an open set \(G (\not\subset \Delta) \) containing \(C_{\Delta -E}(f, p) \). There are \(V(a_i) \subset (\subset U) (i = 1, 2, \ldots, N) \) such that \(f(a_i) = c \) and \(V(a_i) \cap V(a_j) = \emptyset (i \neq j) \), and which are mapped onto a \(V_0(c) \), satisfying \(V_0(c) \cap G = \emptyset \), by \(f \) homeomorphically. There is a \(U' \in \{U(p, r)\} \) such that \(U' \subset U \) and \(\bigcup_{q \in W} \mathcal{C}(f, q) \subset G \), where \(W = U' \cap \Delta - E \). For each \(q \in W \), there is a \(U(q) \in \{U(q, r)\} \) satisfying \(f(U(q) \cap R) \subset G \). Since \(f(\bigcup_{q \in W} (U(q) \cap R)) \cap V_0(c) = \emptyset \), \(\bigcup_{q \in W} (U(q) \cap R) \cap V_0(c) = \emptyset \) and, hence, \(f^{-1}(V_0(c)) \cap W = \emptyset \). Therefore \(f^{-1}(V_0(c)) \cap U' \cap \Delta = \emptyset \).

Choose a \(U(p, r_{N*}) \) such that \(\overline{U(p, r_{N*})} \subset U' \) and \(U(p, r_{N*}) \cap V(a_i) = \emptyset (i = 1, 2, \ldots, N) \). \(f(U(p, r_{N*}) \cap R) \) contains \(c \), because \(c \in C(f, p) \). Since \(E \cap \text{bdy } U(p, r_{N*}) = \emptyset \), it is easy to see that \(f^{-1}(V_0(c)) \cap \text{bdy } U(p, r_{N*}) \) is compact in \(R \). Hence \(f(R \cap \text{bdy } U(p, r_{N*})) (\not\subset V_0(c) \) is relatively closed on \(V_0(c) \). Thus it is possible to choose some \(V^*(c) \) satisfying \(V^*(c) \cap f(R \cap \text{bdy } U(p, r_{N*})) = \emptyset \).

Take a component \(\mathcal{D}^* (\subset U(p, r_{N*})) \) of \(f^{-1}(V^*(c)) \). \(\partial f(\mathcal{D}^*) - \partial V^*(c) \) has regular points relative to the Dirichlet problem (cf. [1, pp. 42, 50]). Let \(h \) be a continuous function with the property that \(h \) is equal to 0 on \(\partial f(\mathcal{D}^*) \cap \partial V^*(c) \) and \(0 < h < 1 \) in \(\partial f(\mathcal{D}^*) - \partial V^*(c) \). Let \(u \) be the solution of the Dirichlet problem in \(f(\mathcal{D}^*) \) with \(h \) as its boundary function. Then \(0 < u < 1 \) in \(f(\mathcal{D}^*) \) and \(\lim_{q \to a} u \circ f(\mathcal{D}^*) = 0 \) at every \(q \in \partial f(\mathcal{D}^*) \). Since \(E \) is polar, there is a positive superharmonic function \(s \) on \(R \) with \(\lim_{q \to a} s(q) = 0 \) at every \(q \in \partial f(\mathcal{D}^*) \cup (\mathcal{D}^* \cap \Delta) \). It follows from the minimum principle (cf. [1, p. 11]) that \(u \circ f_{D^*} > 0 \) in \(D^* \). This implies a contradiction.
Next consider the case where $U(p, r) \cap (\Delta - E) = \emptyset$ for some $U(p, r)$. Then $C_{\Delta - E} = \emptyset$. We have a contradiction, as we see easily from the above proof. Thus the proof of Theorem 1 is complete.

Theorem 2. If, under the hypotheses of Theorem 1, $e \in F$ is an exceptional point of f in some $U^* \in \{U(p, r)\}$, then either e is an asymptotic point of f at p or there is an infinite sequence of connected sets $K_n (\subset E)$ converging to p such that e is the asymptotic point of f along a path tending to K_n.

Proof. First consider the case where $U(p, r) \cap (\Delta - E) \neq \emptyset$ for every $U(p, r)$. Take any $U'' \in \{U(p, r)\}$ contained in U^*. Since $n(f_{U'^{n}}(p, e)) = 0$, it is possible to take U', $U(p, r_{n^*})$, and $V^*(e)$ in the proof of Theorem 1 such that $U'(p, r_{n^*}) \subset U' \cap U''$ and $V^*(e) \cap f(R \cap bdy U(p, r_{n^*})) = \emptyset$. Any component $D^* (\subset U(p, r_{n^*}))$ of $f^{-1}(V^*(e))$ is not relatively compact in R.

Let $g_{V^*(e)}(b, e)$ denote the Green's function for $V^*(e)$ with pole at e. Suppose that $f(D^*) \not\ni e$. Then $g_{V^*(e)}(f_{D^*}(a), e)$ is bounded on D^*. As in the proof of Theorem 1, it follows that $-g_{V^*(e)}(f_{D^*}(a), e) > 0$ in D^*. This is impossible. Therefore $f(D^*) \ni e$.

Let $w = \psi(b)$ be a local parameter of $V^*(e)$, and write $\psi(V^*(e)) = \{w; |w| < 1\} (\psi(e) = 0)$ and $W_{1/n} = \{w; |w| < 1/n\} (n = 1, 2, 3, \ldots)$. Let $\{D_n\}$ be an infinite sequence of components of $f^{-1} \circ \psi^{-1}(W_{1/n})$ such that $D_{n+1} \subset D_n \subset D^*$, and $\{p_n\}$ an infinite sequence of points $p_n \in D_n$. D_n is not relatively compact in R and $f(D_n) \ni e$. For any compact set $K' (\subset R)$, there is an N_0 such that $D_n \subset R - K'$ for all $n > N_0$. Furthermore, as in the proof of Theorem 1, $D_n \subset E$. For each n, there is a simple arc λ_n joining p_n to p_{n+1} in D_n such that $f(\lambda_n) \subset \psi^{-1}(W_{1/n})$. Thus the path $\lambda = \cup \lambda_n$ tends to a component of $E \cap U(p, r_{n^*})$ and has the property that $f \rightarrow e$ along λ. Since $E \cap bdy U(p, r_n) = \emptyset$ for every n, our assertion is proved.

Next consider the case where $U(p, r) \cap (\Delta - E) = \emptyset$ for some $U(p, r)$. From the above proof, we see easily that our conclusion holds. Thus the proof of Theorem 2 is complete.

References

Department of Mathematics, Shibaura Institute of Technology, 3-9-14, Shibaura, Minato-ku, Tokyo, Japan